【題目】已知函數(shù)f(x)=2x . (Ⅰ)若f(x)=2,求x的值;
(Ⅱ)若2tf(2t)+mf(t)≥0對(duì)于t∈[1,2]恒成立,求實(shí)數(shù)m的取值范圍.

【答案】解:(Ⅰ)當(dāng)x≤0時(shí)f(x)=0,

當(dāng)x>0時(shí), ,

有條件可得, ,

即22x﹣2×2x﹣1=0,解得 ,∵2x>0,∴ ,∴

(Ⅱ)當(dāng)t∈[1,2]時(shí), ,

即m(22t﹣1)≥﹣(24t﹣1).∵22t﹣1>0,∴m≥﹣(22t+1).

∵t∈[1,2],∴﹣(1+22t)∈[﹣17,﹣5],

故m的取值范圍是[﹣5,+∞).


【解析】(I)當(dāng)x≤0時(shí)得到f(x)=0而f(x)=2,所以無(wú)解;當(dāng)x>0時(shí)解出f(x)=2求出x即可;(II)由 t∈[1,2]時(shí),2tf(2t)+mf(t)≥0恒成立得到,得到f(t)= ,代入得到m的范圍即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a,b,c分別是銳角△ABC的三個(gè)內(nèi)角A,B,C的對(duì)邊,且 =
(1)求A的大;
(2)當(dāng) 時(shí),求b+c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,正方形ADEF與梯形ABCD所在的平面互相垂直,AD⊥CD,AB∥CD,

(1)當(dāng) 時(shí),求證:BM∥平面ADEF;
(2)若平面BDM與平面ABF所成銳角二面角的余弦值為 時(shí),求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,a,b,c分別是角A、B、C的對(duì)邊,且(2a+c)cosB+bcosC=0.
(Ⅰ)求角B;
(Ⅱ)若 ,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某人要利用無(wú)人機(jī)測(cè)量河流的寬度,如圖,從無(wú)人機(jī)A處測(cè)得正前方河流的兩岸B,C的俯角分別為75°,30°,此時(shí)無(wú)人機(jī)的高是60米,則河流的寬度BC等于(

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)有一圓心角為 ,半徑為12cm的扇形鐵皮(如圖).P,Q是弧AB上的動(dòng)點(diǎn)且劣弧 的長(zhǎng)為2πcm,過(guò)P,Q分別作與OA,OB平行或垂直的線,從扇形上裁剪出多邊形OHPRQT,將該多邊形面積表示為角α的函數(shù),并求出其最大面積是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,已知射線OA:x﹣y=0(x≥0),OB:2x+y=0(x≥0).過(guò)點(diǎn)P(1,0)作直線分別交射線OA,OB于點(diǎn)A,B.
(1)當(dāng)AB的中點(diǎn)在直線x﹣2y=0上時(shí),求直線AB的方程;
(2)當(dāng)△AOB的面積取最小值時(shí),求直線AB的方程.
(3)當(dāng)PAPB取最小值時(shí),求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司為激勵(lì)創(chuàng)新,計(jì)劃逐年加大研發(fā)資金投入,若該公司2015年全年投入研發(fā)資金超過(guò)130萬(wàn)元,在此基礎(chǔ)上,每年投入的研發(fā)資金比上一年增長(zhǎng)12%,則該公司全年投入的研發(fā)資金開(kāi)始超過(guò)200萬(wàn)元的年份是年.(參考數(shù)據(jù):lg1.12≈0.05,lg1.3≈0.11,lg2≈0.30).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從某校高一年級(jí)1000名學(xué)生中隨機(jī)抽取100名測(cè)量身高,測(cè)量后發(fā)現(xiàn)被抽取的學(xué)生身高全部介于155厘米到195厘米之間,將測(cè)量結(jié)果分為八組:第一組[155,160),第二組[160,165),…,第八組[190,195),得到頻率分布直方圖如圖所示. (Ⅰ)計(jì)算第三組的樣本數(shù);并估計(jì)該校高一年級(jí)1000名學(xué)生中身高在170厘米以下的人數(shù);
(Ⅱ)估計(jì)被隨機(jī)抽取的這100名學(xué)生身高的中位數(shù)、平均數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案