定義在(0,
π
2
)
上的函數(shù)y=3sinx與y=8cotx交于點(diǎn)P,過(guò)P作x軸的垂線,垂足為P1,直線P1P與y=cosx的圖象交于點(diǎn)P2,則線段P1P2的長(zhǎng)度為_(kāi)_____.
∵定義在(0,
π
2
)
上的函數(shù)y=3sinx與y=8cotx交于點(diǎn)P,過(guò)P作x軸的垂線,垂足為P1,
∴3sinx=8cotx⇒cosx=
3
8
sin2x
=
3
8
(1-cos2x)⇒cosx=
1
3
,cosx=-3(舍).
∴y=cosx=
1
3

∴線段P1P2的長(zhǎng)度為:
1
3

故答案為:
1
3
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
如圖,函數(shù)f1x)=A sin(wx+j)(A>0,w>0,|j|<)的一段圖象,過(guò)點(diǎn)(0,1).(1)求函數(shù)f1x)的解析式;(2)將函數(shù)yf1x)的圖象按向量平移,得到函數(shù)yf2x),求yf1x)+f2x)的最大值,并求此時(shí)自變量x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)的周期為.
(1)當(dāng)時(shí),求的取值范圍;
(2)求函數(shù)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

函數(shù):①y=x•sinx②y=x•cosx③y=x•|cosx|④y=x•2x的圖象(部)如下,但順序被打亂,則按照從左到右將圖象對(duì)應(yīng)的函數(shù)序號(hào)安排正確的一組是(  )
A.④①②③B.①④③②C.①④②③D.③④②①

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知f(x)=sin(2x+
π
3
)

(1)求函數(shù)f(x)的遞減區(qū)間;
(2)用五點(diǎn)法作出函數(shù)在一個(gè)周期內(nèi)的圖象,并說(shuō)明它是由y=sinx的圖象依次經(jīng)過(guò)哪些變換而得到的?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

函數(shù)y=tanx+sinx-|tanx-sinx|在區(qū)間(
π
2
,
2
)
內(nèi)的圖象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

函數(shù)f(x)=Asin(ωx+φ),(A>0,0<ω,|φ|<
π
2
)
的圖象如圖所示,則f(x)=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

為了得到函數(shù)y=3sin(2x-
π
6
)的圖象,只需把函數(shù)y=3sin(x-
π
6
)的圖象上所有的點(diǎn)的(  )
A.橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變
B.橫坐標(biāo)縮短到原來(lái)的
1
2
倍,縱坐標(biāo)不變
C.縱坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,橫坐標(biāo)不變
D.縱坐標(biāo)縮短到原來(lái)的
1
2
倍,橫坐標(biāo)不變

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,-
π
2
<φ<
π
2
)一個(gè)周期的圖象如圖所示.
(1)求函數(shù)f(x)的表達(dá)式;
(2)若f(α)+f(α-
π
3
)=
24
25
,且α為△ABC的一個(gè)內(nèi)角,求sinα+cosα的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案