19.$\int_1^2{\frac{1}{x}}dx$等于( 。
A.ln2B.1C.$-\frac{1}{2}$D.e

分析 找出被積函數(shù)的原函數(shù),計算定積分即可.

解答 解:原式=lnx|${\;}_{1}^{2}$=ln2;
故選:A.

點評 本題考查了定積分的計算;關鍵是正確求出被積函數(shù)的原函數(shù).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

8.已知實數(shù)x,y滿足$\left\{\begin{array}{l}x+y-4≤0\\ y-1≥0\\ x-1≥0\end{array}\right.$,則z=xy的最大值為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.“?x∈R,x2-x≥0”的否定是( 。
A.?x∈R,x2-x<0B.?x∈R,x2-x≤0
C.$?{x_0}∈R,{x_0}^2-{x_0}≤0$D.$?{x_0}∈R,x_0^2-{x_0}<0$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.在棱長都是1的四面體ABCD中,$\overrightarrow{AB}$•$\overrightarrow{CD}$等于( 。
A.0B.1C.-1D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.在直角坐標系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=\sqrt{3}cosα}\\{y=sinα}\end{array}\right.$,(α為參數(shù)),以原點O為極點,x軸正半軸為極軸,建立極坐標系,曲線C2的極坐標方程為ρsin(θ+$\frac{π}{4}$)=4$\sqrt{2}$.
(Ⅰ)求曲線C1的普通方程與曲線C2的直角坐標方程;
(Ⅱ)設P為曲線C1上的動點,求點P到C2上點的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.若$\overrightarrow a=(1,2)$,$\overrightarrow b=(2,-1)$,則$2\overrightarrow a-\overrightarrow b$=( 。
A.(-4,1)B.(0,1)C.(-4,5)D.(0,5)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.圓x2+y2+2x-4y-3=0上到直線x+y+1=0的距離為$\sqrt{2}$的點共有3 個.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.某圓圓心在x軸上,半徑為$\sqrt{5}$,且與直線x+2y=0相切,則此圓的方程為(x±5)2+y2=5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.設S=loga3t,T=loga(t2-4)(a>0,a≠1),試討論S和T的大。

查看答案和解析>>

同步練習冊答案