【題目】已知函數(shù)在區(qū)間上的最大值為3,最小值為-17,求的值
【答案】k=﹣1,B=﹣17或k=1,B=3
【解析】
試題分析:由題設(shè)知k≠0且f'(x)=3kx(x-2),0<x<2時(shí),x(x-2)<0;x<0或x>2時(shí),x(x-2)>0;x=0和x=2時(shí),f'(x)=0.由題設(shè)知-2≤x≤2,f(-2)=-20k+B,f(0)=B,f(2)=-4k+B.由此能夠求出k、B的值
試題解析:由題設(shè)知k≠0且f'(x)=3kx(x﹣2),0<x<2時(shí),x(x﹣2)<0;
x<0或x>2時(shí),x(x﹣2)>0; x=0和x=2時(shí),f'(x)=0.
由題設(shè)知﹣2≤x≤2,f(﹣2)=﹣20k+B,f(0)=B,f(2)=﹣4k+B
①k<0時(shí),﹣2<x<0時(shí),f'(x)<0;0<x<2時(shí),f'(x)>0,
∴f(x)在[﹣2,0)上遞減,在(0,2)上遞增,
x=0為最小值點(diǎn);∵f(﹣2)>f(2)∴f(x)的最大值是f(﹣2)
即,解得k=-1,B=-17
②k>0時(shí),,解得k=1,B=3
綜上,k=﹣1,B=﹣17或k=1,B=3
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)定義在上的函數(shù),函數(shù),當(dāng)時(shí),取得極大值,且函數(shù)
的圖象關(guān)于點(diǎn)對(duì)稱.
(1)求函數(shù)的表達(dá)式;
(2)求證:當(dāng)時(shí), 為自然對(duì)數(shù)的底數(shù));
(3)若,數(shù)列中是否存在?若存在,求出所有相等的兩項(xiàng),若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列關(guān)于用斜二測(cè)畫法畫直觀圖的說法中,正確的是( )
A.水平放置的正方形的直觀圖不可能是平行四邊形
B.平行四邊形的直觀圖仍是平行四邊形
C.兩條相交直線的直觀圖可能是平行直線
D.兩條垂直的直線的直觀圖仍互相垂直
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),在區(qū)間上有最大值4,最小值1,設(shè).
(1)求的值;
(2)不等式在上恒成立,求實(shí)數(shù)的取值范圍;
(3)方程有四個(gè)不同的實(shí)數(shù)解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】解決某個(gè)問題的算法如下:
第一步,給定一個(gè)實(shí)數(shù)n(n≥2).
第二步,判斷n是否是2,若n=2,則n滿足條件;若n>2,則執(zhí)行第三步.
第三步,依次從2到n-1檢驗(yàn)?zāi)懿荒苷?/span>n,若都不能整除n,則n滿足條件.
則滿足上述條件的實(shí)數(shù)n是( )
A.質(zhì)數(shù) B.奇數(shù)
C.偶數(shù) D.約數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面,底面是直角梯形, 是上的點(diǎn).
(1)求證:平面平面;
(2)若是的中點(diǎn), 求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間和極值;
(2)若恒成立;求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=3x1,x∈{x∈N|1≤x≤4},則函數(shù)f(x)的值域?yàn)?/span> .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)某廠產(chǎn)品的次品率為2%,估算該廠8 000件產(chǎn)品中合格品的件數(shù)大約為( )
A. 160 B. 7 840
C. 7 998 D. 7 800
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com