【題目】如圖所示,已知在矩形中,,,平面,且.
(1)問當實數(shù)在什么范圍時,邊上能存在點,使得?
(2)當邊上有且僅有一個點使得時,求二面角的余弦值大小.
【答案】(1)(2)
【解析】
(1)建立坐標系,設(shè)點,則,,由,可得,顯然當該方程有非負實數(shù)解時,邊上才存在點,使得,,即可求得的范圍.
(2)求平面的一個法向量是和平面的一個法向量是,由,即可求得二面角的余弦值.
(1)以為坐標原點,、、分別為、、軸建立坐標系如圖所示:
,,
,,.
設(shè)點,則,.
由,得.
顯然當該方程有非負實數(shù)解時,邊上才存在點,使得,
故只須.
,故的取值范圍為.
(2)易見,當時,上僅有一點滿足題意,
此時,即為的中點,
得:,,.
設(shè)平面的一個法向量是,
則,,
,,
,取,,,所以.
又平面的一個法向量是.
,
二面角的余弦值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在點處的切線與直線平行.
(Ⅰ)求實數(shù)的值;
(Ⅱ)設(shè).
(i)若函數(shù)在上恒成立,求的最大值;
(ii)當時,判斷函數(shù)有幾個零點,并給出證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2ax-x2-3ln x,其中a∈R,為常數(shù).
(1)若f(x)在x∈[1,+∞)上是減函數(shù),求實數(shù)a的取值范圍;
(2)若x=3是f(x)的極值點,求f(x)在x∈[1,a]上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 的離心率為,兩焦點與短軸的一個端點的連線構(gòu)成的三角形面積為.
(I)求橢圓的方程;
(II)設(shè)與圓相切的直線交橢圓于,兩點(為坐標原點),的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:過點與點.
(1)求橢圓的方程;
(2)設(shè)直線過定點,且斜率為,若橢圓上存在,兩點關(guān)于直線對稱,為坐標原點,求的取值范圍及面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱中,底面是等邊三角形,側(cè)面是矩形,是的中點,是棱上的點,且.
(1)證明:平面;
(2)若,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,設(shè)橢圓1的左右焦點分別為F1、F2,過焦點F1的直線交橢圓于A、B兩點,若△ABF2的內(nèi)切圓的面積為4,設(shè)A、B兩點的坐標分別為A(x1,y1),B(x2,y2),則|y1﹣y2|值為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,點在橢圓上,橢圓的離心率是.
(1)求橢圓的標準方程;
(2)設(shè)點為橢圓長軸的左端點,為橢圓上異于橢圓長軸端點的兩點,記直線斜率分別為,若,請判斷直線是否過定點?若過定點,求該定點坐標,若不過定點,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com