(本題滿分14分)
已知函數(shù)
(1)求曲線在點處的切線方程;
(2)若過點可作曲線的三條切線,求實數(shù)的取值范圍.
解:(1)               ………2分
∴曲線處的切線方程為,即 ………4分
(2)過點向曲線作切線,設(shè)切點為

則切線方程為                   ………………6分
代入上式,整理得。
∵過點可作曲線的三條切線
∴方程(*)有三個不同實數(shù)根.                 ……………8分
,=.
或1.                                            ……………10分
的變化情況如下表













遞增
極大
遞減
極小
遞增
有極大值有極小值.             …………12分
由題意有,當且僅當  即時,
函數(shù)有三個不同零點.
此時過點可作曲線的三條不同切線。故的范圍是  …………14分
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
已知函數(shù).
(1)若函數(shù)f(x)在上為增函數(shù),求實數(shù)a的取值范圍;
(2)當a=1時,求f(x)在上的最大值和最小值;(注)
(3)當a=1時,求證:對大于1的任意正整數(shù)n,均有.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)
(1)若,求上的最小值和最大值;
(2)如果恒成立,求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

拋物線軸的交點坐標為(  )
A.(-5,0)B.(5,0)C.(0,-5)D.(0,5)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設(shè)f0(x) = sinx,f1(x)=f0′(x),f2(x)=f1′(x),…,fn+1(x) = fn′(x),n∈N,則
f2005(x)=                                                         
A.sinx B.-sinx C.cosxD.-cosx

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(12分)
設(shè)函數(shù)f(x)= x3-3ax+b   (a≠0).
(Ⅰ)若曲線y= f(x)在點(2,f(x))處與直線相切,求的值;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間與極值點.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如果說某物體作直線運動的時間與距離滿足,則其在時的瞬時速度為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

函數(shù)附近的平均變化率為_________________;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù)f(x)=sin x+ln x,則f′(1)的值為  (   )
A   1-cos1         B   1+cos1         C  cos1-1           D  -1-cos1

查看答案和解析>>

同步練習冊答案