{an}是等差數(shù)列,{bn}是各項(xiàng)都為正數(shù)的等比數(shù)列,且a1=b1=1,a3+b5=21,a5+b3=13.

(1)求{an}、{bn}的通項(xiàng)公式;

(2)求數(shù)列{}的前n項(xiàng)和Sn.

(1)設(shè){an}的公差為d,{bn}的公比為q,則依題意有q>0且,解得d=2,q=2.

所以an=1+(n-1)d=2n-1,bn=1×qn-1=2n-1.

(2),

Sn=1++…+、

2Sn=2+3++…+、

②-①得Sn=2+2++…+

=2+2×(1++…+)-

=2+2×.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,點(diǎn)(n,
snn
)(n∈N+)在函數(shù)y=-x+12的圖象上.
(1)寫出Sn關(guān)于n的函數(shù)表達(dá)式;
(2)求證:數(shù)列{an}是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè){an}是等差數(shù)列,an>0,公差d≠0,求證:
an+1
+
an+4
an+2
+
an+3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}是等差數(shù)列,其中a1=31,公差d=-8.
(1)求數(shù)列{an}的通項(xiàng)公式.
(2)數(shù)列{an}從哪一項(xiàng)開始小于0?
(3)求數(shù)列{an}前n項(xiàng)和的最大值,求出對應(yīng)n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義一種運(yùn)算*,滿足n*k=n•λk-1(n、k∈N+,λ是非零實(shí)常數(shù)).
(1)對任意給定的k,設(shè)an=n*k(n=1,2,3,…),求證:數(shù)列{an}是等差數(shù)列,并求k=2時(shí),該數(shù)列的前10項(xiàng)和;
(2)對任意給定的n,設(shè)bk=n*k(k=1,2,3,…),求證:數(shù)列{bk}是等比數(shù)列,并求出此時(shí)該數(shù)列的前10項(xiàng)和;
(3)設(shè)cn=n*n(n=1,2,3,…),試求數(shù)列{cn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是等差數(shù)列,且a1=2,S3=12.
(Ⅰ)求an
(Ⅱ)求數(shù)列{anxn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊答案