1 | 3 |
1 |
3 |
TA |
TB |
|
x2 |
a2 |
y2 |
b2 |
2 |
2 |
x2 |
2 |
1 |
3 |
4 |
3 |
|
|
1 |
3 |
|
|
TA |
TB |
TA |
TB |
4 |
3 |
4 |
3 |
4 |
3 |
16 |
9 |
-16 |
18k2+9 |
4 |
3 |
12k |
18k2+9 |
16 |
9 |
科目:高中數(shù)學(xué) 來源: 題型:
(09年山東省實驗中學(xué)綜合測試理)(本小題滿分13分)已知橢圓的兩焦點與短軸的一個端點的連線構(gòu)成等腰直角三角形,直線是拋物線的一條切線.
(1)求橢圓的方程;
(2)過點的動直線L交橢圓C于A、B兩點,試問:在坐標平面上是否存在一
個定點T,使得以AB為直徑的圓恒過點T?若存在,求出點T的坐標;若不存在,
請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知橢圓的兩焦點與短軸的一個端點的連線構(gòu)成等腰直角三角形,直線是拋物線的一條切線.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點的動直線L交橢圓C于A、B兩點.問:是否存在一個定點T,使得以AB為直徑的圓恒過點T ? 若存在,求點T坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆福建泉州一中高二第二學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知橢圓的兩焦點與短軸的一個端點連結(jié)成等腰直角三角形,直線是拋物線的一條切線。
(1) 求橢圓方程;
(2) 直線交橢圓于A、B兩點,若點P滿足(O為坐標原點), 判斷點P是否在橢圓上,并說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省高三下學(xué)期二輪復(fù)習(xí)數(shù)學(xué)理卷 題型:解答題
(本小題滿分12分)
已知橢圓的兩焦點與短軸的一個端點的連線構(gòu)成等腰直角三角形,直線是拋物線的一條切線.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點的動直線L交橢圓C于A.B兩點.問:是否存在一個定點T,使得以AB為直徑的圓恒過點T ? 若存在,求點T坐標;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com