【題目】已知數(shù)列的前項(xiàng)和為,且滿足,則下列說法正確的是( )
A. 數(shù)列的前項(xiàng)和為 B. 數(shù)列的通項(xiàng)公式為
C. 數(shù)列為遞增數(shù)列 D. 數(shù)列是遞增數(shù)列
【答案】C
【解析】
方法一:根據(jù)數(shù)列的遞推公式可得{}是以5為首項(xiàng),以5為等差的等差數(shù)列,可得Sn=,an=,即可判斷,
方法二:當(dāng)n=1時(shí),分別代入A,B,可得A,B錯(cuò)誤,當(dāng)n=2時(shí),a2+5a1(a1+a2)=0,即a2++a2=0,可得a2=﹣,故D錯(cuò)誤,
方法一:∵an+5Sn﹣1Sn=0,
∴Sn﹣Sn﹣1+5Sn﹣1Sn=0,
∵Sn≠0,
∴﹣=5,
∵a1=,
∴=5,
∴{}是以5為首項(xiàng),以5為等差的等差數(shù)列,
∴=5+5(n﹣1)=5n,
∴Sn=,
當(dāng)n=1時(shí),a1=,
當(dāng)n≥2時(shí),
∴an=Sn﹣Sn﹣1=﹣=,
∴an=,
故只有C正確,
方法二:當(dāng)n=1時(shí),分別代入A,B,可得A,B錯(cuò)誤,
當(dāng)n=2時(shí),a2+5a1(a1+a2)=0,即a2++a2=0,可得a2=﹣,故D錯(cuò)誤,
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列{}的前項(xiàng)和為Sn,且Sn=n(n+1)(n∈N*).
(1)若數(shù)列滿足:,求數(shù)列的通項(xiàng)公式;
(2)令,求數(shù)列{}的前n項(xiàng)和Tn.
(3) ,(n為正整數(shù)),問是否存在非零整數(shù),使得對(duì)任意正整數(shù)n,都有若存在,求的值,若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙去某公司應(yīng)聘面試.該公司的面試方案為:應(yīng)聘者從6道備選題中一次性隨機(jī)抽取3道題,按照答對(duì)題目的個(gè)數(shù)為標(biāo)準(zhǔn)進(jìn)行篩選.已知6道備選題中應(yīng)聘者甲有4道題能正確完成,2道題不能完成;應(yīng)聘者乙每題正確完成的概率都是,且每題正確完成與否互不影響.
(1)分別求甲、乙兩人正確完成面試題數(shù)的分布列,并計(jì)算其數(shù)學(xué)期望;
(2)請(qǐng)分析比較甲、乙兩人誰的面試通過的可能性較大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在樣本的頻率分布直方圖中共有個(gè)小矩形,若中間一個(gè)小矩形的面積等于其余個(gè)小矩形面積的,且樣本容量為3200,則中間一組的頻數(shù)為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】鐵人中學(xué)高二學(xué)年某學(xué)生對(duì)其親屬30人飲食習(xí)慣進(jìn)行了一次調(diào)查,并用如圖所示的莖葉圖表示30人的飲食指數(shù).(說明:圖中飲食指數(shù)低于70的人,飲食以蔬菜為主;飲食指數(shù)高于70的人,飲食以肉類為主.)
(Ⅰ)根據(jù)莖葉圖,幫助這位學(xué)生說明其親屬30人的飲食習(xí)慣;
(Ⅱ)根據(jù)以上數(shù)據(jù)完成下列的列聯(lián)表:
主食蔬菜 | 主食肉類 | 合計(jì) | |
50歲以下人數(shù) | |||
50歲以上人數(shù) | |||
合計(jì)人數(shù) |
(Ⅲ)能否在犯錯(cuò)誤的概率不超過0.01的前提下認(rèn)為其親屬的飲食習(xí)慣與年齡有關(guān)系?
附:.
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)對(duì)任意,都有,且時(shí),.
(1)求證是奇函數(shù);
(2)求在上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校研究性學(xué)習(xí)小組調(diào)查學(xué)生使用智能手機(jī)對(duì)學(xué)習(xí)成績的影響,詢問了 30 名同學(xué),得到如下的 列聯(lián)表:
使用智能手機(jī) | 不使用智能手機(jī) | 總計(jì) | |
學(xué)習(xí)成績優(yōu)秀 | 4 | 8 | 12 |
學(xué)習(xí)成績不優(yōu)秀 | 16 | 2 | 18 |
總計(jì) | 20 | 10 | 30 |
(Ⅰ)根據(jù)以上列聯(lián)表判斷,能否在犯錯(cuò)誤的概率不超過 0.005 的前提下認(rèn)為使用智能手機(jī)對(duì)學(xué)習(xí)成績有影響?
(Ⅱ)從使用學(xué)習(xí)成績優(yōu)秀的 12 名同學(xué)中,隨機(jī)抽取 2 名同學(xué),求抽到不使用智能手機(jī)的人數(shù)的分布列及數(shù)學(xué)期望.智能手機(jī)的 20 名同學(xué)中,按分層抽樣的方法選出 5 名同學(xué),求所抽取的 5 名同學(xué)中“學(xué)習(xí)成績優(yōu)秀”和“學(xué)習(xí)成績不優(yōu)秀”的人數(shù);
(Ⅲ)從問題(Ⅱ)中倍抽取的 5 名同學(xué),再隨機(jī)抽取 3 名同學(xué),試求抽取 3 名同學(xué)中恰有 2 名同學(xué)為“學(xué)習(xí)成績不優(yōu)秀”的概率.
參考公式:,其中
參考數(shù)據(jù):
0.05 | 0,。025 | 0.010 | 0.005 | 0.001 | |
3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com