【題目】在平行四邊形中,,,,是EA的中點(diǎn)(如圖1),將沿CD折起到圖2中的位置,得到四棱錐是.
(1)求證:平面PDA;
(2)若PD與平面ABCD所成的角為.且為銳角三角形,求平面PAD和平面PBC所成銳二面角的余弦值.
【答案】(1)證明見(jiàn)解析; (2)
【解析】
(1)證明,,即可證明線面垂直;
(2)由線面角求得,以中點(diǎn)為坐標(biāo)原點(diǎn)建立直角坐標(biāo)系,由向量法求得二面角的余弦值.
(1)將沿CD折起過(guò)程中,平面PDA成立.證明如下:
是EA的中點(diǎn),,,
在中,由余弦定理得,
,
,
,
為等腰直角三角形且,
,,,
平面PDA.
(2)由(1)知平面PDA,平面ABCD,
平面平面ABCD,
為銳角三角形,
在平面ABCD內(nèi)的射影必在棱AD上,記為O,連接PO,平面ABCD,
則是PD與平面ABCD所成的角,
,
,
為等邊三角形,O為AD的中點(diǎn),
故以O為坐標(biāo)原點(diǎn),過(guò)點(diǎn)O且與CD平行的直線為x軸,
DA所在直線為y軸,OP所在直線為z軸建立如圖所示的空間直角坐標(biāo)系,
設(shè)x軸與BC交于點(diǎn)M,
,
易知
,
則,,,,
,,,
平面PDA,
可取平面PDA的一個(gè)法向量,
設(shè)平面PBC的法向量,
則,即,
令,則為平面PBC的一個(gè)法向量,
設(shè)平面PAD和平面PBC所成的角為,
由圖易知為銳角,
.
平面PAD和平面PBC所成角的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了美化環(huán)境,某公園欲將一塊空地規(guī)劃建成休閑草坪,休閑草坪的形狀為如圖所示的四邊形ABCD.其中AB=3百米,AD=百米,且△BCD是以D為直角頂點(diǎn)的等腰直角三角形.?dāng)M修建兩條小路AC,BD(路的寬度忽略不計(jì)),設(shè)∠BAD=,(,).
(1)當(dāng)cos=時(shí),求小路AC的長(zhǎng)度;
(2)當(dāng)草坪ABCD的面積最大時(shí),求此時(shí)小路BD的長(zhǎng)度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
Ⅰ當(dāng)時(shí),取得極值,求的值并判斷是極大值點(diǎn)還是極小值點(diǎn);
Ⅱ當(dāng)函數(shù)有兩個(gè)極值點(diǎn),,且時(shí),總有成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知焦點(diǎn)在x軸的橢圓C:離心率e=,A是左頂點(diǎn),E(2,0)
(1)求橢圓C的標(biāo)準(zhǔn)方程:
(2)若斜率不為0的直線l過(guò)點(diǎn)E,且與橢圓C相交于點(diǎn)P,Q兩點(diǎn),求三角形APQ面積的最大值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2018年11月21日,意大利奢侈品牌“﹠”在廣告中涉嫌辱華,中國(guó)明星紛紛站出來(lái)抵制該品牌,隨后京東、天貓、唯品會(huì)等中國(guó)電商平臺(tái)全線下架了該品牌商品,當(dāng)天有大量網(wǎng)友關(guān)注此事件,某網(wǎng)上論壇從關(guān)注此事件跟帖中,隨機(jī)抽取了100名網(wǎng)友進(jìn)行調(diào)查統(tǒng)計(jì),先分別統(tǒng)計(jì)他們?cè)诟械牧粞詶l數(shù),再把網(wǎng)友人數(shù)按留言條數(shù)分成6組:,,,,,,得到如圖所示的頻率分布直方圖;
并將其中留言不低于40條的規(guī)定為“強(qiáng)烈關(guān)注”,否則為“一般關(guān)注”,對(duì)這100名網(wǎng)友進(jìn)一步統(tǒng)計(jì)得到列聯(lián)表的部分?jǐn)?shù)據(jù)如下表.
一般關(guān)注 | 強(qiáng)烈關(guān)注 | 合計(jì) | |
男 | 45 | ||
女 | 10 | 55 | |
合計(jì) | 100 |
(1)在答題卡上補(bǔ)全列聯(lián)表中數(shù)據(jù);并判斷能否有95%的把握認(rèn)為網(wǎng)友對(duì)此事件是否為“強(qiáng)烈關(guān)注”與性別有關(guān)?
(2)現(xiàn)已從“強(qiáng)烈關(guān)注”的網(wǎng)友中按性別分層抽樣選取了5人,再?gòu)倪@5人中選取2人,求這2人中至少有1名女性的概率.
參考公式及數(shù)據(jù):,
0.05 | 0.010 | |
3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示甲,在四邊形ABCD中,,,是邊長(zhǎng)為8的正三角形,把沿AC折起到的位置,使得平面平面ACD,如圖所示乙所示,點(diǎn)O,M,N分別為棱AC,PA,AD的中點(diǎn).
求證:平面PON;
求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn),圓,點(diǎn)是圓上一動(dòng)點(diǎn), 的垂直平分線與交于點(diǎn).
(1)求點(diǎn)的軌跡方程;
(2)設(shè)點(diǎn)的軌跡為曲線,過(guò)點(diǎn)且斜率不為0的直線與交于兩點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,證明直線過(guò)定點(diǎn),并求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)a=1時(shí),寫(xiě)出的單調(diào)遞增區(qū)間(不需寫(xiě)出推證過(guò)程);
(Ⅱ)當(dāng)x>0時(shí),若直線y=4與函數(shù)的圖像交于A,B兩點(diǎn),記,求的最大值;
(Ⅲ)若關(guān)于x的方程在區(qū)間(1,2)上有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在,點(diǎn)M是外一點(diǎn),BM=2CM=2,則AM的最大值與最小值的差為____________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com