有A、B、C、D、E共5個口袋,每個口袋裝有大小和質(zhì)量均相同的4個紅球和2個黑球,現(xiàn)每次從其中一個口袋中摸出3個球,規(guī)定:若摸出的3個球恰為2個紅球和1個黑球,則稱為最佳摸球組合.
(1)求從口袋A中摸出的3個球?yàn)樽罴衙蚪M合的概率;
(2)現(xiàn)從每個口袋中摸出3個球,求恰有3個口袋中摸出的球是最佳摸球組合的概率.
分析:(1)即為從口袋A中摸出2個紅球和1個黑球,其概率為 P=
=
.
(2)每個口袋中摸球?yàn)樽罴呀M合的概率相同,從5個口袋中摸球可以看成5次獨(dú)立重復(fù)試難,故所求概率為
P=C
53•
()3•
()2.
解答:解:(1)從口袋A中摸出的3個球?yàn)樽罴衙蚪M合即為從口袋A中摸出2個紅球和1個黑球,其概率為
P=
=
.
(2)由題意知:每個口袋中摸球?yàn)樽罴呀M合的概率相同,從5個口袋中摸球可以看成5次獨(dú)立重復(fù)試難,故所求概率為
P=C
53•
()3•
()2=
.
點(diǎn)評:本題考查n次獨(dú)立重復(fù)實(shí)驗(yàn)中恰好發(fā)生k次的概率,等可能事件的概率,判斷每個口袋中摸球?yàn)樽罴呀M合的概率相同,且
都等于
,是解題的關(guān)鍵.