已知曲線C:y=x3-3x2+2x,直線l:y=kx,且直線l與曲線C相切于點(x0,y0)(x0≠0),求直線l的方程及切點坐標.
分析:切點(x0,y0)既在曲線上,又在切線上,由導(dǎo)數(shù)可得切線的斜率.聯(lián)立方程組解之即可.
解答:解:∵直線過原點,則k=
y0
x0
(x0≠1).
由點(x0,y0)在曲線C上,則y0=x03-3x02+2x0
y0
x0
=x02-3x0+2.
又y′=3x2-6x+2,
∴在(x0,y0)處曲線C的切線斜率應(yīng)為k=f′(x0)=3x02-6x0+2.
∴x02-3x0+2=3x02-6x0+2.
整理得2x02-3x0=0.
解得x0=
3
2
(∵x0≠0).
這時,y0=-
3
8
,k=-
1
4

因此,直線l的方程為y=-
1
4
x,切點坐標是(
3
2
,-
3
8
).
點評:對于高次函數(shù)凡涉及到切線或其單調(diào)性的問題時,要有求導(dǎo)意識.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C:y=x3及其上一點P1(1,1),過P1作C的切線l1,l1與C的另一公共點為P2(不同于P1),過P2作C的切線l2,l2與C的另一公共點為P3(不同于P2),…,得到C的一列切線l1,l2,…,ln,…,相應(yīng)的切點分別為P1,P2,…,Pn,….
(1)求Pn的坐標;
(2)設(shè)ln到ln+1的角為θn,求
limn→∞
tanθn
之值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C:y=x3-3x2+2x
(1)求曲線C上斜率最小的切線方程.
(2)過原點引曲線C的切線,求切線方程及其對應(yīng)的切點坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

17、已知曲線C:y=x3-x+2和點A(1,2),求過點A的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C:y=x3-3x2,直線l:y=-2x
(1)求曲線C與直線l圍成的區(qū)域的面積;
(2)求曲線y=x3-3x2(0≤x≤1)與直線l圍成的圖形繞x軸旋轉(zhuǎn)一周所得的旋轉(zhuǎn)體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C:y=x3
(1)求曲線C上橫坐標為1的點處的切線的方程;
(2)第(1)小題中的切線與曲線C是否還有其他的公共點?

查看答案和解析>>

同步練習(xí)冊答案