設變量x,y滿足約束條件
y≥x
x+2y≤2
x≥-2
,則z=x-3y的最小值是
 
考點:簡單線性規(guī)劃
專題:不等式的解法及應用
分析:將z=x-3y變形為y=
1
3
x-
z
3
,此式可看作是斜率為
1
3
,縱截距為-
z
3
的一系列平行直線,當-
z
3
最大時,z最。鞒鲈坏仁浇M表示的平面區(qū)域,讓直線y=
1
3
x
向此平面區(qū)域平移,可探求縱截距的最大值.
解答: 解:由z=x-3y,得y=
1
3
x-
z
3
,此式可看作是斜率為
1
3
,縱截距為-
z
3
的直線,
-
z
3
最大時,z最。
畫出直線y=x,x+2y=2,x=-2,從而可標出不等式組
y≥x
x+2y≤2
x≥-2
表示的平面區(qū)域,如右圖所示.
由圖知,當動直線y=
1
3
x-
z
3
經(jīng)過點P時,z最小,此時由
x=-2
x+2y=2
,得P(-2,2),
從而zmin=-2-3×2=-8,即z=x-3y的最小值是-8.
故答案為:-8.
點評:本題考查了線性規(guī)劃的應用,為高考常考的題型,求解此類問題的一般步驟是:
(1)作出已知不等式組表示的平面區(qū)域;
(2)運用化歸思想及數(shù)形結合思想,將目標函數(shù)的最值問題轉化為平面中幾何量的最值問題處理.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

有4個結論:
①對于任意x∈(0,1),log
1
3
x>log
1
4
x;
②存在x∈(0,+∞),(
1
3
x<(
1
4
x
③對于任意的x∈(0,
1
4
),(
1
3
xlog
1
4
x;
④對于任意的x∈(0,+∞),(
1
3
xlog
1
3
x
其中的正確的結論是(  )
A、①③B、①④C、②③D、②④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,已知以C1為圓心的圓的方程為:(x+1)2+y2=1,以C2為圓心的圓的方程為:(x-3)2+(y-4)2=1.
(Ⅰ)若過點C1的直線l沿x軸向左平移3個單位,沿y軸向下平移4個單位后,回到原來的位置,求直線l被圓C2截得的弦長;
(Ⅱ)圓D是以1為半徑,圓心在圓C3:(x+1)2+y2=9上移動的動圓,若圓D上任意一點P分別作圓C1的兩條切線PE,PF,切點為E,F(xiàn),求
C1E
C1F
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線
x2
16
-
y2
9
=1
及點P(2,1),是否存在過點P的直線l,使直線l被雙曲線截得的弦恰好被P點平分?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
25
+
y2
16
=1
上的點P到橢圓一個焦點的距離為7,則P到另一焦點的距離為( 。
A、2B、3C、5D、7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若集合A={0,1,2,4},B={1,2,3},則A∩B=(  )
A、{0,1,2,3,4}
B、{0,4}
C、{1,2}
D、[3]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

用列舉法表示:大于0且不超過6的全體偶數(shù)的集合A=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

△ABC中a=6,b=6
3
,A=30°則邊C=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,內(nèi)角A、B、C的對邊長分別a、b、c,已知a2-c2=2b,且sinAcosC=3cosAsinC,則b=( 。
A、4
B、4
2
C、2
3
D、3
3

查看答案和解析>>

同步練習冊答案