精英家教網 > 高中數學 > 題目詳情

【題目】冠狀病毒是一個大型病毒家族,己知可引起感冒以及中東呼吸綜合征(MERS)和嚴重急性呼吸綜合征(SARS)等較嚴重疾病.而今年出現的新型冠狀病毒(nCoV)是以前從未在人體中發(fā)現的冠狀病毒新毒株.人感染了新型冠狀病毒后常見體征有呼吸道癥狀、發(fā)熱、咳嗽、氣促和呼吸困難等.在較嚴重病例中,感染可導致肺炎、嚴重急性呼吸綜合征、腎衰竭,甚至死亡.某醫(yī)院為篩查冠狀病毒,需要檢驗血液是否為陽性,現有份需檢驗血液.

1)假設這份需檢驗血液有且只有一份為陽性,從中依次不放回的抽取份血液,已知前兩次的血液均為陰性,求第次出現陽性血液的概率;

2)現在對份血液進行檢驗,假設每份血液的檢驗結果是陽性還是陰性都是獨立的,據統(tǒng)計每份血液是陽性結果的概率為,現在有以下兩種檢驗方式:方式一:逐份檢驗;方式二:混合檢驗,將份血液分別取樣混合在一起檢驗(假設血液混合后不影響血液的檢驗).若檢驗結果為陰性,則這份血液全為陰性,檢驗結束;如果檢驗結果為陽性,則這份血液中有為陽性的血液,為了明確這份血液究竟哪幾份為陽性,就要對這份再逐份檢驗.從檢驗的次數分析,哪一種檢驗方式更好一些,并說明理由.參考數據:.

【答案】1;(2)方式二,理由見解析

【解析】

(1)易得剩下的兩份中一份陰性一份陽性即可求解.

(2)易得方式一要檢驗四次,方式二可能的檢驗次數為,再求出分布列以及方式二檢驗次數的數學期望,再根據可求得方式二檢驗次數的數學期望與方式一中的四次比較大小即可.

解:(1.

2)方式一:檢驗次數.

設方式二需要需檢驗的次數為.根據題意有的可能取值為.

,.

所以:的分布列為:

1

5

所以:.

因為:,

所以:.

所以:從檢驗的次數分析,方式二更好一些.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,已知平面平面,直線平面,且.

1)求證:平面;

2)若,平面,求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(13分)

在平面直角坐標系xOy中,拋物線上異于坐標原點O的兩不同動點A、B滿足(如圖所示).

)求得重心G(即三角形三條中線的交點)的軌跡方程;

的面積是否存在最小值?若存在,請求出最小值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知一塊邊長為4的正方形鋁板(如圖),請設計一種裁剪方法,用虛線標示在答題卡本題圖中,通過該方案裁剪,可焊接做成一個密封的正四棱柱(底面是正方形且側棱垂于底面的四棱柱),且該四棱柱的全面積等于正方形鋁板的面積(要求裁剪的塊數盡可能少,不計焊接縫的面積),則該四棱柱外接球的體積為________.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓C的右頂點為A,左焦點為,過點A的直線與橢圓C的另一個交點為B,軸,點在直線.

I)求的面積;

II)過點S的直線與橢圓C交于P,Q兩點,且的面積是的面積的6倍,求直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(Ⅰ)求函數的單調區(qū)間;

(Ⅱ)當時,若上有零點,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

1)函數,討論的單調性;

2)函數)的圖象在點處的切線為,證明:有且只有兩個點使得直線與函數的圖象也相切.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】受疫情影響,某電器廠生產的空調滯銷,經研究決定,在已有線下門店銷售的基礎上,成立線上營銷團隊,大力發(fā)展“網紅”經濟,當線下銷售人數為(人)時,每天線下銷售空調可達(百臺),當線上銷售人數為(人)()時,每天線上銷量達到(百臺).

1)解不等式:,并解釋其實際意義;

2)若該工廠大有銷售人員)人,按市場需求,安排人員進行線上或線下銷售,問該工廠每天銷售空調總臺數的最大值是多少百臺?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系中, ,動點滿足:以為直徑的圓與軸相切.

(1)求點的軌跡方程;

(2)設點的軌跡為曲線,直線過點且與交于兩點,當的面積之和取得最小值時,求直線的方程.

查看答案和解析>>

同步練習冊答案