如圖,設(shè)橢圓的中心為原點O,長軸在x軸上,上頂點為A,左右焦點分別為,線段的中點分別為,且△ 是面積為4的直角三角形.

(Ⅰ)求該橢圓的離心率和標準方程;

(Ⅱ)過做直線交橢圓于P,Q兩點,使,求直線的方程.

 

【答案】

(I)所求橢圓的標準方程為:  

(2)滿足條件的直線有兩條,其方程分別為:

【解析】(I) 設(shè)所求橢圓的標準方程為,因是直角三角形,又,故為直角,因此,得.又因為,消去b可得a,c的一個等式關(guān)系,從而可求出離心率,再利用,求出b,進而可得到a的值,橢圓方程確定.

(II) 由(1)知,由題意知直線的傾斜角不為0,故可設(shè)直線的方程為:,代入橢圓方程得,

因為,所以 

 =0

然后借助韋達定理代入上式可得關(guān)于m的方程求出m值,得到直線l的方程

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2012•重慶)如圖,設(shè)橢圓的中心為原點O,長軸在x軸上,上頂點為A,左右焦點分別為F1,F(xiàn)2,線段OF1,OF2的中點分別為B1,B2,且△AB1B2是面積為4的直角三角形.
(Ⅰ)求該橢圓的離心率和標準方程;
(Ⅱ)過B1做直線l交橢圓于P,Q兩點,使PB2⊥QB2,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•重慶)如圖,設(shè)橢圓的中心為原點O,長軸在x軸上,上頂點為A,左、右焦點分別為F1,F(xiàn)2,線段OF1,OF2的中點分別為B1,B2,且△AB1B2是面積為4的直角三角形.
(Ⅰ)求該橢圓的離心率和標準方程;
(Ⅱ)過B1作直線交橢圓于P,Q兩點,使PB2⊥QB2,求△PB2Q的面積.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年山東省高三高考壓軸理科數(shù)學試卷(解析版) 題型:解答題

如圖,設(shè)橢圓的中心為原點O,長軸在x軸上,上頂點為A,左、右焦點分別為F1,F(xiàn)2,線段OF1,OF2的中點分別為B1,B2,且△AB1B2是面積為4的直角三角形.

(1)求該橢圓的離心率和標準方程;

(2)過B1作直線l交橢圓于P,Q兩點,使PB2⊥QB2,求直線l的方程.

 

查看答案和解析>>

科目:高中數(shù)學 來源:高考真題 題型:解答題

如圖,設(shè)橢圓的中心為原點O,長軸在x軸上,上頂點為A,左右焦點分別為F1,F(xiàn)2,線段OF1,OF2的中點分別為B1,B2,且△AB1B2是面積為4的直角三角形.
(1)求該橢圓的離心率和標準方程;
(2)過B1做直線l交橢圓于P,Q兩點,使PB2⊥QB2,求直線l的方程。

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年云南省昆明市官渡二中高三(上)第二次段考數(shù)學試卷(理科)(解析版) 題型:解答題

如圖,設(shè)橢圓的中心為原點O,長軸在x軸上,上頂點為A,左右焦點分別為F1,F(xiàn)2,線段OF1,OF2的中點分別為B1,B2,且△AB1B2是面積為4的直角三角形.
(Ⅰ)求該橢圓的離心率和標準方程;
(Ⅱ)過B1做直線l交橢圓于P,Q兩點,使PB2⊥QB2,求直線l的方程.

查看答案和解析>>

同步練習冊答案