某公司為一家制冷設(shè)備廠設(shè)計(jì)生產(chǎn)某種型號(hào)的長(zhǎng)方形薄板,其周長(zhǎng)為4m.這種薄板須沿其對(duì)角線折疊后使用.如圖所示,ABCD(AB>AD)為長(zhǎng)方形薄板,沿AC折疊后AB′交DC于點(diǎn)P.當(dāng)△ADP的面積最大時(shí)最節(jié)能,凹多邊形ACB′PD的面積最大時(shí)制冷效果最好.
(1)設(shè)AB=xm,用x表示圖中DP的長(zhǎng)度,并寫(xiě)出x的取值范圍;
(2)若要求最節(jié)能,應(yīng)怎樣設(shè)計(jì)薄板的長(zhǎng)和寬?
(3)若要求制冷效果最好,應(yīng)怎樣設(shè)計(jì)薄板的長(zhǎng)和寬?

(1)y=2,1<x<2.(2)當(dāng)薄板長(zhǎng)為m,寬為(2-)m時(shí),節(jié)能效果最好.(3)當(dāng)薄板長(zhǎng)為m,寬為(2-)m時(shí),制冷效果最好.

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知二次函數(shù)的二次項(xiàng)系數(shù)為,且不等式的解集為(1,3).
⑴若方程有兩個(gè)相等實(shí)數(shù)根,求的解析式.
⑵若的最大值為正數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

為了保護(hù)環(huán)境,某工廠在國(guó)家的號(hào)召下,把廢棄物回收轉(zhuǎn)化為某種產(chǎn)品,經(jīng)測(cè)算,處理成本(萬(wàn)元)與處理量(噸)之間的函數(shù)關(guān)系可近似的表示為:
,且每處理一噸廢棄物可得價(jià)值為萬(wàn)元的某種產(chǎn)品,同時(shí)獲得國(guó)家補(bǔ)貼萬(wàn)元.
(1)當(dāng)時(shí),判斷該項(xiàng)舉措能否獲利?如果能獲利,求出最大利潤(rùn);
如果不能獲利,請(qǐng)求出國(guó)家最少補(bǔ)貼多少萬(wàn)元,該工廠才不會(huì)虧損?
(2)當(dāng)處理量為多少噸時(shí),每噸的平均處理成本最少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)f(x)=在區(qū)間[-1,1]上是增函數(shù).
(1)求實(shí)數(shù)a的值組成的集合A;
(2)設(shè)x1、x2是關(guān)于x的方程f(x)=的兩個(gè)相異實(shí)根,若對(duì)任意a∈A及t∈[-1,1],不等式m2+tm+1≥|x1-x2|恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

我國(guó)遼東半島普蘭附近的泥炭層中,發(fā)掘出的古蓮子,至今大部分還能發(fā)芽開(kāi)花,這些古蓮子是多少年以前的遺物呢?要測(cè)定古物的年代,可用放射性碳法.在動(dòng)植物的體內(nèi)都含有微量的放射性14C,動(dòng)植物死亡后,停止了新陳代謝,14C不再產(chǎn)生,且原有的14C會(huì)自動(dòng)衰變,經(jīng)過(guò)5570年(叫做14C的半衰期),它的殘余量只有原始量的一半,經(jīng)過(guò)科學(xué)家測(cè)定知道,若14C的原始含量為a,則經(jīng)過(guò)t年后的殘余量a′(與a之間滿足a′=a·e-kt).現(xiàn)測(cè)得出土的古蓮子中14C殘余量占原量的87.9%,試推算古蓮子的生活年代.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù)f(x)=-ax2,a∈R.
(1)當(dāng)a=2時(shí),求函數(shù)f(x)的零點(diǎn);
(2)當(dāng)a>0時(shí),求證:函數(shù)f(x)在(0,+∞)內(nèi)有且僅有一個(gè)零點(diǎn);
(3)若函數(shù)f(x)有四個(gè)不同的零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

化簡(jiǎn)下列各式(其中各字母均為正數(shù)):
(1)1.5-×0+80.25×+(×)6
(2);
(3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知二次函數(shù)f(x)=x2+(2a-1)x+1-2a.
(1)判斷命題“對(duì)于任意的a∈R(R為實(shí)數(shù)集),方程f(x)=1必有實(shí)數(shù)根”的真假,并寫(xiě)出判斷過(guò)程.
(2)若y=f(x)在區(qū)間(-1,0)及(0,)內(nèi)各有一個(gè)零點(diǎn),求實(shí)數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

計(jì)算:lg-lg+lg12.5-log89·log278;

查看答案和解析>>

同步練習(xí)冊(cè)答案