【題目】已知0<α<π,sin(π﹣α)+cos(π+α)=m.
(1)當(dāng)m=1時(shí),求α;
(2)當(dāng) 時(shí),求tanα的值.
【答案】
(1)解:由已知得:sinα﹣cosα=1,所以1﹣2sinαcosα=1,∴sinαcosα=0,
又0<α<π,∴cosα=0,∴
(2)解:當(dāng) 時(shí), .①
,∴ ,∴ ,
∵ ,∴ .②
由①②可得 , ,
∴tanα=2.
【解析】(1)利用誘導(dǎo)公式、同角三角函數(shù)的基本關(guān)系,求得sinαcosα=0,結(jié)合0<α<π,可得cosα=0,從而求得α的值.(2)當(dāng) 時(shí), ,由此利用同角三角函數(shù)的基本關(guān)系求得sinα+cosα的值,可得sinα和cosα的值,從而求得tanα的值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=4cosxsin(x+ )+a的最大值為2.
(1)求a的值及f(x)的最小正周期;
(2)求f(x)的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知 是定義在 上的偶函數(shù),對(duì)任意 ,都有 ,且當(dāng) 時(shí), .若 在 上有5個(gè)根 ,則 的值是( )
A.10
B.9
C.8
D.7
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)P在直線(xiàn)x+3y﹣2=0上,點(diǎn)Q在直線(xiàn)x+3y+6=0上,線(xiàn)段PQ的中點(diǎn)為M(x0 , y0),且y0<x0+2,則 的取值范圍是( )
A.[﹣ ,0)
B.(﹣ ,0)
C.(﹣ ,+∞)
D.(﹣∞,﹣ )∪(0,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在梯形ABCD中,AB∥CD,AD=DC=CB=a,∠ABC=60°,四邊形ACFE是矩形,且平面ACFE⊥平面ABCD,點(diǎn)M在線(xiàn)段EF上. (I)求證:BC⊥平面ACFE;
(II)當(dāng)EM為何值時(shí),AM∥平面BDF?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD為正方形,PD⊥平面ABCD,PD∥QA,QA=AB= PD. (Ⅰ)證明:平面PQC⊥平面DCQ
(Ⅱ)求二面角Q﹣BP﹣C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)=ax2﹣2(a+1)x+3(a∈R).
(1)若函數(shù)f(x)在 單調(diào)遞減,求實(shí)數(shù)a的取值范圍;
(2)令h(x)= ,若存在 ,使得|h(x1)﹣h(x2)|≥ 成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=a(|sinx|+|cosx|)﹣ sin2x﹣1,若f( )= ﹣ .
(1)求a的值,并寫(xiě)出函數(shù)f(x)的最小正周期(不需證明);
(2)是否存在正整數(shù)k,使得函數(shù)f(x)在區(qū)間[0,kπ]內(nèi)恰有2017個(gè)零點(diǎn)?若存在,求出k的值,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=sin(ωx﹣ )( <ω<2),在區(qū)間(0, )上( )
A.既有最大值又有最小值
B.有最大值沒(méi)有最小值
C.有最小值沒(méi)有最大值
D.既沒(méi)有最大值也沒(méi)有最小值
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com