二項式(x2+
2
x
10展開式中的常數(shù)項是( 。
A、第7項B、第8項
C、第9項D、第10項
考點:二項式系數(shù)的性質(zhì)
專題:二項式定理
分析:在二項展開式的通項公式中,令x的冪指數(shù)等于0,求出r的值,即可求得常數(shù)項.
解答: 解:二項式(x2+
2
x
10展開式中的通項公為 Tr+1=
C
r
10
•2rx20-
5r
2
,
令20-
5r
2
=0,求得r=8,∴展開式中的常數(shù)項是第九項,
故選:C.
點評:本題主要考查二項式定理的應(yīng)用,二項展開式的通項公式,求展開式中某項的系數(shù),二項式系數(shù)的性質(zhì),屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)是以2為周期的函數(shù),且f(2)=2,則f(6)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若圓(x-3)2+(y+5)2=r2上的點到直線4x-3y-2=0的最近距離等于1,則半徑r的值為( 。
A、4B、5C、6D、9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將5名學(xué)生分到A,B,C三個宿舍,每個宿舍至少1人至多2人,其中學(xué)生甲不到A宿舍的不同分法有( 。
A、18種B、36種
C、48種D、60種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x、y滿足約束條件
x-2y≥-2
3x-2y≤3
x+y≥1
,若z=x2+y2,則z的最小值為( 。
A、
3
4
B、
1
2
C、
4
5
D、
5
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=cos(ωx+φ)(ω>0,|φ|≤
π
2
)的圖象如圖所示,則φ等于(  )
A、
π
3
B、
π
12
C、-
π
6
D、-
π
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中正確命題的個數(shù)是(  )
(1)對于命題p:?x∈R,使得x2+x+1<0,則¬p:?x∈R,均有x2+x+1>0;
(2)m=3是直線(m+3)x+my-2=0與直線mx-6y+5=0互相垂直的充要條件;
(3)已知回歸直線的斜率的估計值為1.23,樣本點的中心為(4,5),則回歸直線方程為
?
y
=1.23x+0.08
(4)曲線y=x2與y=x所圍成圖形的面積是S=
1
0
(x-x2)dx.
A、2B、3C、4D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某高中男子體育小組的50米跑成績(單位:s)為6.4,6.5,7.0,6.8,7.1,7.3,6.9,7.4,7.5,如圖是從這些成績中搜索處小于6.8s的成績的一個程序框圖,則圖中①②分別填上( 。
A、r≥6.8,n>9?
B、r<6.8,n>9?
C、r≥6.8,n≤9?
D、r<6.8,n≤9?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù):f(x)=
x+1-a
a-x
(a∈R且x≠a).
(1)證明:f(x)+2+f(2a-x)=0對定義域內(nèi)所有x都成立;
(2)若函數(shù)g(x)=x2+|(x-a)f(x)|在[a,a+1]的最小值為4,求a的值.

查看答案和解析>>

同步練習(xí)冊答案