【題目】已知橢圓:的左、右焦點分別為,,左頂點為,離心率為,點是橢圓上的動點,的面積的最大值為.
(1)求橢圓的方程;
(2)設(shè)經(jīng)過點的直線與橢圓相交于不同的兩點,,線段的中垂線為.若直線與直線相交于點,與直線相交于點,求的最小值.
【答案】見解析.
【解析】試題(1)由已知,有,可得. 設(shè)點的縱坐標為.可得
的最大值 。求出,.即可得到橢圓的方程;
(2)由題意知直線的斜率不為,故設(shè)直線:.
設(shè),,,.
聯(lián)立,得.由弦長公式可得
,由此得到的表達式,由基本不等式可得到的最小值.
試題解析:
(1)由已知,有,即.
∵,∴.
設(shè)點的縱坐標為.
則 ,
即.
∴,.
∴橢圓的方程為.
(2)由題意知直線的斜率不為,故設(shè)直線:.
設(shè),,,.
聯(lián)立,消去,得.
此時.
∴,.
由弦長公式,得 .
整理,得.
又,∴ .
∴ .
∴ ,
當且僅當,即時等號成立.
∴當,即直線的斜率為時,取得最小值.
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線的焦點為,,是拋物線上的兩個動點,且,過,兩點分別作拋物線的切線,設(shè)其交點為.
(1)若直線與,軸分別交于點,,且的面積為,求的值;
(2)求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】十九大以來,某貧困地區(qū)扶貧辦積極貫徹落實國家精準扶貧的政策要求,帶領(lǐng)廣大農(nóng)村地區(qū)人民群眾脫貧奔小康。經(jīng)過不懈的奮力拼搏,新農(nóng)村建設(shè)取得巨大進步,農(nóng)民年收入也逐年增加。為了更好的制定2019年關(guān)于加快提升農(nóng)民年收人力爭早日脫貧的工作計劃,該地扶貧辦統(tǒng)計了2018年50位農(nóng)民的年收人并制成如下頻率分布直方圖:
(1)根據(jù)頻率分布直方圖,估計50位農(nóng)民的年平均收入(單位:千元)(同一組數(shù)據(jù)用該組數(shù)據(jù)區(qū)間的中點值表示);
(2)由頻率分布直方圖,可以認為該貧困地區(qū)農(nóng)民年收入服從正態(tài)分布,其中近似為年平均收入,近似為樣本方差,經(jīng)計算得.利用該正態(tài)分布,求:
(i)在2019年脫貧攻堅工作中,若使該地區(qū)約有占總農(nóng)民人數(shù)的的農(nóng)民的年收入高于扶貧辦制定的最低年收入標準,則最低年收入大約為多少千元?
(ii)為了調(diào)研“精準扶貧,不落一人”的政策要求落實情況, 扶貧辦隨機走訪了1000位農(nóng)民。若每個農(nóng)民的年收人相互獨立,問:這1000位農(nóng)民中的年收入不少于12.14千元的人數(shù)最有可能是多少?
附:參考數(shù)據(jù)與公式,若~,則①;②;③.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知復數(shù)z=,(m∈R,i是虛數(shù)單位).
(1)若z是純虛數(shù),求m的值;
(2)設(shè)是z的共軛復數(shù),復數(shù)+2z在復平面上對應的點在第一象限,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,橢圓經(jīng)過點,且點到橢圓的兩焦點的距離之和為.
(l)求橢圓的標準方程;
(2)若是橢圓上的兩個點,線段的中垂線的斜率為且直線與交于點,為坐標原點,求證:三點共線.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線和曲線(為參數(shù)),以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,且兩種坐標系中取相同的單位長度.
(1)求曲線和曲線的極坐標方程;
(2)設(shè)曲線與軸、軸分別交于兩點,且線段的中點為,若射線與曲線交于點,求兩點間的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的最大值為,其圖像相鄰兩條對稱軸之間的距離為,且的圖像關(guān)于點對稱,則下列判斷正確的是()
A. 函數(shù)在上單調(diào)遞增
B. 函數(shù)的圖像關(guān)于直線對稱
C. 當時,函數(shù)的最小值為
D. 要得到函數(shù)的圖像,只需要將的圖像向右平移個單位
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列命題正確的是( )
A.若數(shù)列、的極限都存在,且,則數(shù)列的極限存在
B.若數(shù)列、的極限都不存在,則數(shù)列的極限也不存在
C.若數(shù)列、的極限都存在,則數(shù)列、的極限也存在
D.數(shù),若數(shù)列的極限存在,則數(shù)列的極限也存在
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD是邊長為2的菱形,,平面ABCD,,且.
(1)求直線AD和平面AEF所成角的大;
(2)求二面角E-AF-D的平面角的大小.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com