已知函數(shù)在上是增函數(shù)
(1)求實數(shù)的取值集合
(2)當(dāng)取值集合中的最小值時, 定義數(shù)列;滿足且, , 設(shè), 證明:數(shù)列是等比數(shù)列, 并求數(shù)列的通項公式.
(3)若, 數(shù)列的前項和為, 求.
(1) (2) (3)
解析試題分析:(1)因為函數(shù)在上是增函數(shù), 只需在滿足恒成立, 即 4分
(2),
即,
是等比數(shù)列, 首項為, 公比為3
8分
(3)由(2)可知
令,
兩式相減得
12分
考點:函數(shù)單調(diào)性,數(shù)列求通項求和
點評:第一問由單調(diào)性可轉(zhuǎn)化為導(dǎo)數(shù)的取值范圍,第二問是通過構(gòu)造新數(shù)列轉(zhuǎn)化為等差或等比數(shù)列,第三問求和時數(shù)列通項是關(guān)于n的一次函數(shù)式與指數(shù)式的形式,這樣的數(shù)列一般采用錯位相減法求和
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知=2,點()在函數(shù)的圖像上,其中=.
( 1 ) 證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項公式;
(3)記,求數(shù)列{}的前n項和,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列{an}是首項a1=4,公比q≠1的等比數(shù)列,Sn是其前n項和,且成等差數(shù)列.
(1)求公比q的值;
(2)求Tn=a2+a4+a6+…+a2n的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列{an}滿足S n + a n= 2n +1.
(1)寫出a1,a2,a3, 并推測a n的表達式;
(2)用數(shù)學(xué)歸納法證明所得的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
對任意都有
(Ⅰ)求和的值.
(Ⅱ)數(shù)列滿足:=+,數(shù)列是等差數(shù)列嗎?請給予證明;
(Ⅲ)令試比較與的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
楊輝是中國南宋末年的一位杰出的數(shù)學(xué)家、數(shù)學(xué)教育家、楊輝三角是楊輝的一大重要研究成果,它的許多性質(zhì)與組合數(shù)的性質(zhì)有關(guān),楊輝三角中蘊藏了許多優(yōu)美的規(guī)律。下圖是一個11階楊輝三角:
(1)求第20行中從左到右的第4個數(shù);
(2)若第n行中從左到右第14個數(shù)與第15個數(shù)的比為,求n的值;
(3)求n階(包括0階)楊輝三角的所有數(shù)的和;
(4)在第3斜列中,前5個數(shù)依次為1,3,6,10,15;第4斜列中,第5個數(shù)為35。顯然,1+3+6+10+15=35。事實上,一般地有這樣的結(jié)論:第m斜列中(從右上到左下)前k個數(shù)之和,一定等于第m+1斜列中第k個數(shù)。試用含有m、k的數(shù)學(xué)公式表示上述結(jié)論,并給予證明。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在數(shù)列{an}(n∈N*)中,已知a1=1,a2k=-ak,a2k-1=(-1)k+1ak,k∈N*. 記數(shù)列{an}的前n項和為Sn.
(1)求S5,S7的值;
(2)求證:對任意n∈N*,Sn≥0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知數(shù)列中,,數(shù)列滿足。
(1)求證:數(shù)列是等差數(shù)列;
(2)求數(shù)列中的最大項和最小項,并說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com