【題目】已知橢圓 的離心率為 ,它的一個(gè)焦點(diǎn)到短軸頂點(diǎn)的距離為2,動(dòng)直線l:y=kx+m交橢圓E于A、B兩點(diǎn),設(shè)直線OA、OB的斜率都存在,且 .
(1)求橢圓E的方程;
(2)求證:2m2=4k2+3;
(3)求|AB|的最大值.
【答案】
(1)解:由題意可得: ,a=2,a2=b2+c2,解得a=2,c=1,b2=3.
∴橢圓E的方程為 =1
(2)證明:設(shè)A(x1,y1),B(x2,y2),
聯(lián)立 ,化為:(3+4k2)x2+8kmx+4m2﹣12=0,
△>0,∴x1+x2= ,x1x2= ,
∵ .
∴ =﹣ ,即3x1x2+4y1y2=0,
∴3x1x2+4(kx1+m)(kx2+m)=0,
化為:(3+4k2)x1x2+4km(x1+x2)+4m2=0,
∴(3+4k2) +4km +4m2=0,
化為:2m2=4k2+3
(3)解:由(2)可得:△=64k2m2﹣4(3+4k2)(4m2﹣12)>0,
化為:4k2+3>m2,∴4k2+3 ,∴k∈R.
|AB|=
=
=
= = ∈ .
當(dāng)且僅當(dāng)k=0時(shí),|AB|的最大值2
【解析】(1)根據(jù)橢圓的基本性質(zhì)解題;(2)本小題主要應(yīng)用了根與系數(shù)的關(guān)系來(lái)化簡(jiǎn)計(jì)算過(guò)程;(3)先根據(jù)(2)判斷點(diǎn)A,點(diǎn)B的存在性,再根據(jù)兩點(diǎn)間的距離公式線段AB長(zhǎng)的表達(dá)式,最后求得線段AB的最大值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)過(guò)拋物線 的焦點(diǎn) 的直線 交拋物線于點(diǎn) ,若以 為直徑的圓過(guò)點(diǎn) ,且與 軸交于 , 兩點(diǎn),則 ( )
A.3
B.2
C.-3
D.-2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知
(I)判斷f(x)的奇偶性并證明
(Ⅱ)若a>1,判斷f(x)的單調(diào)性并用單調(diào)性定義證明;
(Ⅲ)若,求實(shí)數(shù)x的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如右圖拋物線頂點(diǎn)在原點(diǎn),圓(x﹣2)2+y2=22的圓心恰是拋物線的焦點(diǎn),
(Ⅰ)求拋物線的方程;
(Ⅱ)一直線的斜率等于2,且過(guò)拋物線焦點(diǎn),它依次截拋物線和圓于A、B、C、D四點(diǎn),求|AB|+|CD|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】把一枚質(zhì)地均勻的骰子投擲兩次,記第一次出現(xiàn)的點(diǎn)數(shù)為a,第二次出現(xiàn)的點(diǎn)數(shù)為b.已知方程組
(1)求方程組只有一個(gè)解的概率;
(2)若方程組每個(gè)解對(duì)應(yīng)平面直角坐標(biāo)系中的點(diǎn)P(x,y),求點(diǎn)P落在第四象限的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知某企業(yè)近3年的前7個(gè)月的月利潤(rùn)(單位:百萬(wàn)元)如下面的折線圖所示:
(1)試問(wèn)這3年的前7個(gè)月中哪個(gè)月的月平均利潤(rùn)最高?
(2)通過(guò)計(jì)算判斷這3年的前7個(gè)月的總利潤(rùn)的發(fā)展趨勢(shì);
(3)試以第3年的前4個(gè)月的數(shù)據(jù)(如下表),用線性回歸的擬合模式估測(cè)第3年8月份的利潤(rùn).
月份x | 1 | 2 | 3 | 4 |
利潤(rùn)y(單位:百萬(wàn)元) | 4 | 4 | 6 | 6 |
相關(guān)公式: , .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)等差數(shù)列{an}滿足a3=5,a10=﹣9.
(1)求{an}的通項(xiàng)公式;
(2)求{an}的前n項(xiàng)和Sn及使得Sn最大的序號(hào)n的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取100件,測(cè)量這些產(chǎn)品的一項(xiàng)質(zhì)量指標(biāo)值,由測(cè)量結(jié)果得如下頻數(shù)分布表:
質(zhì)量指標(biāo)值分組 | [75,85) | [85,95) | [95,105) | [105,115) | [115,125) |
頻數(shù) | 6 | 26 | 38 | 22 | 8 |
(1)作出這些數(shù)據(jù)的頻率分布直方圖;
(2)估計(jì)這種產(chǎn)品質(zhì)量指標(biāo)值的平均數(shù)及方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(3)根據(jù)以上抽樣調(diào)查數(shù)據(jù),能否認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“質(zhì)量指標(biāo)值不低于95的產(chǎn)品至少要占全部產(chǎn)品80%”的規(guī)定?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com