精英家教網 > 高中數學 > 題目詳情
10.設向量$\overrightarrow a,\overrightarrow b$滿足$|{\overrightarrow a}|=|{\overrightarrow b}$|=1,$\overrightarrow a•\overrightarrow b=m$,則$|{\overrightarrow a+t\overrightarrow b}|({t∈R})$的最小值為( 。
A.2B.$\sqrt{1+{m^2}}$C.1D.$\sqrt{1-{m^2}}$

分析 根據向量的數量積公式和向向量的模的以及二次函數的性質即可求出.

解答 解:∵$|{\overrightarrow a}|=|{\overrightarrow b}$|=1,$\overrightarrow a•\overrightarrow b=m$,
∴|$\overrightarrow{a}$+t$\overrightarrow$|2=|$\overrightarrow{a}$|2+2t$\overrightarrow{a}$•$\overrightarrow$+t2|$\overrightarrow$|2=1+2tm+t2=(t+m)2-m2+1,
∴|$\overrightarrow{a}$+t$\overrightarrow$|≥$\sqrt{1-{m}^{2}}$
故選:D.

點評 本題主要考查平面向量的模長公式,兩個向量的數量積的定義,二次函數的性質,屬中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源:2016-2017學年河北正定中學高二上月考一數學(理)試卷(解析版) 題型:解答題

某公司2016年前三個月的利潤(單位:百萬元)如下:

(1)求利潤關于月份的線性回歸方程;

(2)試用(1)中求得的回歸方程預測4月和5月的利潤;

(3)試用(1)中求得的回歸方程預測該公司2016年從幾月份開始利潤超過1000萬?

相關公式:

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

2.設F1,F2分別是橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$(a>b>0)的左右焦點,M是C上一點且MF2與x軸垂直,直線MF1與C的另一個交點為N.
(1)若直線MN的斜率為$\frac{3}{4}$,求C的離心率;
(2)若直線MN在y軸上的截距為2,且|MN|=5|F1N|,求橢圓標準方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

18.如圖,四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AB=1,BC=2,E為PD的中點

(1)求異面直線PA與CE所成角的大。
(2)求三棱錐A-CDE的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

5.如圖,已知平面ABC⊥平面ACDE,且△ABC為等腰直角三角形,AC=BC=4,等腰梯形ACDE中,AC∥DE且AE=DE=2.
(Ⅰ)求證:平面ABE⊥平面BCE;
(Ⅱ)求二面角C-BE-D的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

15.如圖,在四棱錐P-ABCD中,E為AD上一點,面PAD⊥面ABCD,四邊形
BCDE為矩形∠PAD=60°,PB=2$\sqrt{3}$,PA=ED=2AE=2.
(Ⅰ)求證:CB⊥面PEB
(Ⅱ) 已知$\overrightarrow{PF}=λ\overrightarrow{PC}({λ∈R})$,且PA∥面BEF,求λ的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

1.已知橢圓C1,拋物線C2的焦點均在x軸上,從兩條曲線上各取兩個點,將其坐標混合記錄于如表中:
x-22$\sqrt{6}$9
y$\sqrt{2}$-$\sqrt{2}$-13
(1)求橢圓C1和拋物線C2的標準方程.
(2)過橢圓C1右焦點F的直線l與此橢圓相交于A,B兩點,若點P為直線x=4上任意一點,
①試證:直線PA,PF,PB的斜率成等差數列.
②若點P在X軸上,設$\overrightarrow{FA}$=λ$\overrightarrow{FB}$,λ∈[-2,-1],求|$\overrightarrow{PA}$+$\overrightarrow{PB}$|取最大值時的直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

18.定積分${∫}_{0}^{π}$|sinx-cosx|dx的值是( 。
A.2+$\sqrt{2}$B.2-$\sqrt{2}$C.2D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

17.設不等式x2-x-2≤0的解集為M,若對任意x∈M,不等式:2x+1-4x-1≤4-ln($\frac{s-1}{s+1}$)均成立,則s的取值范圍是:s>1.

查看答案和解析>>

同步練習冊答案