【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù),),以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),以軸的正半軸為極軸建立坐標(biāo)系,圓的極坐標(biāo)方程為.
(1)求圓的直角坐標(biāo)方程(化為標(biāo)準(zhǔn)方程)及曲線的普通方程;
(2)若圓與曲線的公共弦長(zhǎng)為,求的值.
【答案】(1) 曲線的直角坐標(biāo)方程為,曲線的普通方程為;(2) .
【解析】分析:(1)由極坐標(biāo)與直角坐標(biāo)的互化公式即可得圓的直角坐標(biāo)方程;消去參數(shù)即可得曲線的普通方程;
(2)聯(lián)立圓C與曲線,因?yàn)閳A的直徑為,且圓與曲線的公共弦長(zhǎng)為,即公共弦直線經(jīng)過圓的圓心,即可得到答案.
詳解:(1)由,得,
所以,
即,
故曲線的直角坐標(biāo)方程為.
曲線的普通方程為
(2)聯(lián)立,得
因?yàn)閳A的直徑為,且圓與曲線的公共弦長(zhǎng)為,
所以直線經(jīng)過圓的圓心,
則,
又
所以
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下表是某地一家超市在2018年一月份某一周內(nèi)周2到周6的時(shí)間與每天獲得的利潤(rùn)(單位:萬元)的有關(guān)數(shù)據(jù).
星期 | 星期2 | 星期3 | 星期4 | 星期5 | 星期6 |
利潤(rùn) | 2 | 3 | 5 | 6 | 9 |
(1)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求線性回歸直線方程;
(2)估計(jì)星期日獲得的利潤(rùn)為多少萬元.
參考公式:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某汽車公司對(duì)最近6個(gè)月內(nèi)的市場(chǎng)占有率進(jìn)行了統(tǒng)計(jì),結(jié)果如表;
月份代碼 | 1 | 2 | 3 | 4 | 5 | 6 |
市場(chǎng)占有率 | 11 | 13 | 16 | 15 | 20 | 21 |
(1)可用線性回歸模型擬合與之間的關(guān)系嗎?如果能,請(qǐng)求出關(guān)于的線性回歸方程,如果不能,請(qǐng)說明理由;
(2)公司決定再采購(gòu)兩款車擴(kuò)大市場(chǎng), 兩款車各100輛的資料如表:
車型 | 報(bào)廢年限(年) | 合計(jì) | 成本 | |||
1 | 2 | 3 | 4 | |||
10 | 30 | 40 | 20 | 100 | 1000元/輛 | |
15 | 40 | 35 | 10 | 100 | 800元/輛 |
平均每輛車每年可為公司帶來收入元,不考慮采購(gòu)成本之外的其他成本,假設(shè)每輛車的使用壽命部是整數(shù)年,用每輛車使用壽命的頻率作為概率,以每輛車產(chǎn)生利潤(rùn)的平均數(shù)作為決策依據(jù),應(yīng)選擇采購(gòu)哪款車型?
參考數(shù)據(jù): ,,,.
參考公式:相關(guān)系數(shù);
回歸直線方程為,其中,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知圓與軸的左右交點(diǎn)分別為,與軸正半軸的交點(diǎn)為.
(1)若直線過點(diǎn)并且與圓相切,求直線的方程;
(2)若點(diǎn)是圓上第一象限內(nèi)的點(diǎn),直線分別與軸交于點(diǎn),點(diǎn)是線段的中點(diǎn),直線,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高三特長(zhǎng)班的一次月考數(shù)學(xué)成績(jī)的莖葉圖和頻率分布直方圖1都受到不同程度的損壞,但可見部分如圖2,據(jù)此解答如下問題:
(Ⅰ)求分?jǐn)?shù)在[70,80)之間的頻數(shù),并計(jì)算頻率分布直方圖中[70,80)間的矩形的高;
(Ⅱ)若要從分?jǐn)?shù)在[50,70)之間的試卷中任取兩份分析學(xué)生失分情況,在抽取的試卷中,求至少有一份在[50,60)之間的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為 ,(θ為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸,建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程是ρ= sinθ+cosθ,曲線C3的極坐標(biāo)方程是θ= . (Ⅰ)求曲線C1的極坐標(biāo)方程;
(Ⅱ)曲線C3與曲線C1交于點(diǎn)O,A,曲線C3與曲線C2曲線交于點(diǎn)O,B,求|AB|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,圓形紙片的圓心為O,半徑為5cm,該紙片上的等邊三角形ABC的中心為O.D、E、F為圓O上的點(diǎn),△DBC,△ECA,△FAB分別是以BC,CA,AB為底邊的等腰三角形.沿虛線剪開后,分別以BC,CA,AB為折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱錐.當(dāng)△ABC的邊長(zhǎng)變化時(shí),所得三棱錐體積(單位:cm3)的最大值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知點(diǎn),直線l與圓C:(x一1)2+(y一2)2=4相交于A,B兩點(diǎn),且OA⊥OB.
(1)若直線OA的方程為y=一3x,求直線OB被圓C截得的弦長(zhǎng);
(2)若直線l過點(diǎn)(0,2),求l的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com