【題目】設(shè)函數(shù),曲線在點(diǎn)處的切線方程為.

1)求的解析式;

(2)證明:曲線上任一點(diǎn)處的切線與直線和直線所圍成的三角形面積為定值,并求此定值.

【答案】(1) ;(2)證明見解析.

【解析】解:(1)方程7x4y120可化為yx3,

當(dāng)x2時(shí),y

f′(x)a,

于是,解得

f(x)x

(2)證明:設(shè)P(x0,y0)為曲線上任一點(diǎn),由f′(x)1知,曲線在點(diǎn)P(x0y0)處的切線方程為yy0(1)·(xx0),即y(x0)(1)(xx0)

x0得,y=-,從而得切線與直線x0,交點(diǎn)坐標(biāo)為(0,- )

yx,得yx2x0,從而得切線與直線yx的交點(diǎn)坐標(biāo)為(2x0,2x0)

所以點(diǎn)P(x0y0)處的切線與直線x0,yx所圍成的三角形面積為|||2x0|6

曲線yf(x)上任一點(diǎn)處的切線與直線x0和直線yx所圍成的三角形面積為定值,此定值為6

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}中an= (n∈N*),將數(shù)列{an}中的整數(shù)項(xiàng)按原來的順序組成數(shù)列{bn},則b2018的值為(
A.5035
B.5039
C.5043
D.5047

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某科技創(chuàng)新公司在第一年年初購買了一臺(tái)價(jià)值昂貴的設(shè)備,該設(shè)備的第1年的維護(hù)費(fèi)支出為20萬元,從第2年到第6年,每年的維修費(fèi)增加4萬元,從第7年開始,每年維修費(fèi)為上一年的125%.

(1)求第n年該設(shè)備的維修費(fèi)的表達(dá)式;

(2)設(shè),若萬元,則該設(shè)備繼續(xù)使用,否則須在第n年對(duì)設(shè)備更新,求在第幾年必須對(duì)該設(shè)備進(jìn)行更新?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,圓的參數(shù)方程為,(t為參數(shù)),在以原點(diǎn)O為極點(diǎn),軸的非負(fù)半軸為極軸建立的極坐標(biāo)系中,直線的極坐標(biāo)方程為,兩點(diǎn)的極坐標(biāo)分別為.

(1)求圓的普通方程和直線的直角坐標(biāo)方程;

(2)點(diǎn)是圓上任一點(diǎn),求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題只理科做,滿分14分)如圖,已知平面,,△是正三角形,,的中點(diǎn).

1)求證:平面;

2)求證:平面平面;

3)求平面與平面所成銳二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題一定正確的是(
A.在等差數(shù)列{an}中,若ap+aq=ar+aδ , 則p+q=r+δ
B.已知數(shù)列{an}的前n項(xiàng)和為Sn , 若{an}是等比數(shù)列,則Sk , S2k﹣Sk , S3k﹣S2k也是等比數(shù)列
C.在數(shù)列{an}中,若ap+aq=2ar , 則ap , ar , aq成等差數(shù)列
D.在數(shù)列{an}中,若ap?aq=a ,則ap , ar , aq成等比數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有甲、乙兩個(gè)班級(jí)進(jìn)行數(shù)學(xué)考試,按照大于等于85分為優(yōu)秀,85分以下為非優(yōu)秀統(tǒng)計(jì)成績,得到如下所示的列聯(lián)表:

優(yōu)秀

非優(yōu)秀

總計(jì)

甲班

10

乙班

30

總計(jì)

已知在全部105人中隨機(jī)抽取1人,成績優(yōu)秀的概率為,則下列說法正確的是(  )

A. 列聯(lián)表中的值為30,的值為35

B. 列聯(lián)表中的值為15,的值為50

C. 根據(jù)列聯(lián)表中的數(shù)據(jù),若按的可靠性要求,能認(rèn)為“成績與班級(jí)有關(guān)系”

D. 根據(jù)列聯(lián)表中的數(shù)據(jù),若按的可靠性要求,不能認(rèn)為“成績與班級(jí)有關(guān)系”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn , 且a1=1,an+12=Sn+1+Sn
(1)求{an}的通項(xiàng)公式;
(2)設(shè)bn=a2n﹣1 , 求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知冪函數(shù)為偶函數(shù).

1)求的解析式;

2)若函數(shù)在區(qū)間(2,3)上為單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案