【題目】在四面體中, 底面為的重心, 為線段上一點(diǎn),且平面,則直線與所成角的余弦值為__________.
【答案】
【解析】在三棱錐D-ABC中,取AB的中點(diǎn)E,連接CE,在CE上取點(diǎn)G使得CG=2GE,則為的重心,取EB的三等分點(diǎn)M,即MB=2EM,則有MG平行于BC,MB=2,又,所以AM=2MB,同樣在線段AD上取點(diǎn)F,使得FM平行于DB,即有AF=2FD,連接FG,因?yàn)?/span> 得到面FGN面DBC,則FG面DBC
取AE的三等分點(diǎn)N,使得AN=2NE,則NG平行于AC,連接FN,則 即為直線與所成角,NG=AC=, , ,
延長(zhǎng)AG交BC于點(diǎn)Q,則AG= AQ,又 ,利用()平方得 AQ=,則AG=,F(xiàn)A=4所以FG=,在 FGN中,
故答案為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】把函數(shù)y=sin(2x+ )的圖象向右平移 個(gè)單位,再把所得圖象上各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的 ,則所得圖象的函數(shù)解析式是( )
A.y=sin(4x+ π)
B.y=sin(4x+ )
C.y=sin4x
D.y=sinx
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)舉行有獎(jiǎng)促銷活動(dòng),顧客購(gòu)買一定金額的商品后即可抽獎(jiǎng)。抽獎(jiǎng)規(guī)則如下:1、抽獎(jiǎng)方案有以下兩種:方案,從裝有1個(gè)紅球、2個(gè)白球(僅顏色不同)的甲袋中隨機(jī)摸出1個(gè)球,若是紅球,則獲得獎(jiǎng)金15元,否則,沒有獎(jiǎng)金,兌獎(jiǎng)后將摸出的球放回甲袋中;方案,從裝有2個(gè)紅、1個(gè)白球(僅顏色不同)的乙袋中隨機(jī)摸出1個(gè)球,若是紅球,則獲得獎(jiǎng)金10元,否則,沒有獎(jiǎng)金,兌獎(jiǎng)后將摸出的球放回乙袋中。
抽獎(jiǎng)條件是:顧客購(gòu)買商品的金額滿100元,可根據(jù)方案抽獎(jiǎng)一;滿足150元,可根據(jù)方案抽獎(jiǎng)(例如某顧客購(gòu)買商品的金額為310元,則該顧客采用的抽獎(jiǎng)方式可以有以下三種,根據(jù)方案抽獎(jiǎng)三次或方案抽獎(jiǎng)兩次或方案各抽獎(jiǎng)一次)。已知顧客在該商場(chǎng)購(gòu)買商品的金額為250元。
(1)若顧客只選擇根據(jù)方案進(jìn)行抽獎(jiǎng),求其所獲獎(jiǎng)金為15元的概率;
(2)當(dāng)若顧客采用每種抽獎(jiǎng)方式的可能性都相等,求其最有可能獲得的獎(jiǎng)金數(shù)(0元除外)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xoy中,已知圓C1:(x+3)2+(y﹣1)2=4和圓C2:(x﹣4)2+(y﹣5)2=4
(1)若直線l過(guò)點(diǎn)A(4,0),且被圓C1截得的弦長(zhǎng)為2 ,求直線l的方程
(2)設(shè)P為平面上的點(diǎn),滿足:存在過(guò)點(diǎn)P的無(wú)窮多對(duì)互相垂直的直線l1和l2 , 它們分別與圓C1和C2相交,且直線l1被圓C1截得的弦長(zhǎng)與直線l2被圓C2截得的弦長(zhǎng)相等,求所有滿足條件的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校在高三抽取了500名學(xué)生,記錄了他們選修A、B、C三門課的選修情況,如表:
科目 學(xué)生人數(shù) | A | B | C |
120 | 是 | 否 | 是 |
60 | 否 | 否 | 是 |
70 | 是 | 是 | 否 |
50 | 是 | 是 | 是 |
150 | 否 | 是 | 是 |
50 | 是 | 否 | 否 |
(Ⅰ)試估計(jì)該校高三學(xué)生在A、B、C三門選修課中同時(shí)選修2門課的概率.
(Ⅱ)若該高三某學(xué)生已選修A,則該學(xué)生同時(shí)選修B、C中哪門的可能性大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列命題:
①若平面α內(nèi)的直線l垂直于平面β內(nèi)的任意直線,則α⊥β;
②若平面α內(nèi)的任一直線都平行于平面β,則α∥β;
③若平面α垂直于平面β,直線l在平面α內(nèi),則l⊥β;
④若平面α平行于平面β,直線l在平面α內(nèi),則l∥β.
其中正確命題的個(gè)數(shù)是( )
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知單調(diào)遞增的等差數(shù)列{an},滿足|a10a11|>a10a11 , 且a102<a112 , Sn為其前n項(xiàng)和,則( )
A.a8+a12>0
B.S1 , S2 , …S19都小于零,S10為Sn的最小值
C.a8+a13<0
D.S1 , S2 , …S20都小于零,S10為Sn的最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓方程,其左焦點(diǎn)、上頂點(diǎn)和左頂點(diǎn)分別為, , ,坐標(biāo)原點(diǎn)為,且線段, , 的長(zhǎng)度成等差數(shù)列.
(Ⅰ)求橢圓的離心率;
(Ⅱ)若過(guò)點(diǎn)的一條直線交橢圓于點(diǎn), ,交軸于點(diǎn),使得線段被點(diǎn), 三等分,求直線的斜率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com