分析 (1)根據(jù)對(duì)數(shù)的真數(shù)大于0,在討論底數(shù)a與1的大小可得定義域.定義證明單調(diào)性.
(2)根據(jù)定義域是[m,n],f(x)值域也是[m,n],建立關(guān)系求解a的值即可判斷.
(3)根據(jù)定義域是[m,n],f(x)值域也是[m,n],建立關(guān)系,轉(zhuǎn)化為二次函數(shù)的問題配方求解最值.
解答 解:(1)由題意:$\left\{\begin{array}{l}{{a}^{x}-2a>0}\\{{a}^{x}-3a>0}\end{array}\right.$,解得:ax>3a,
①當(dāng)a>1時(shí),x>log3(3a),函數(shù)此時(shí)定義域D=(log3(3a),+∞).
設(shè)x1<x2,x1,x2∈D,
∵${a}^{{x}_{1}}<{a}^{{x}_{2}}$,∴0<${a}^{{x}_{1}}-2a<{a}^{{x}_{2}}-2a$,0<${a}^{{x}_{1}}-3a<{a}^{{x}_{2}}-3a$,
∴$lo{g}_{a}({a}^{{x}_{1}}-2a)<lo{g}_{a}({a}^{{x}_{2}}-2a)$,$lo{g}_{a}({a}^{{x}_{1}}-3a)<lo{g}_{a}({a}^{{x}_{2}}-3a)$,
∴g(x2)>g(x1)
故得函數(shù)g(x)在定義域D=(log3(3a),+∞)內(nèi)是增函數(shù).
②當(dāng)0<a<1時(shí),x<log3(3a),函數(shù)此時(shí)定義域D=(-∞,log3(3a)).
同理可證g(x)在定義域D=(-∞,log3(3a))內(nèi)是增函數(shù).
(2)假設(shè)g(x)存在“好區(qū)間”,由(1)可知?m,n∈D(m<n,
由新定義有:$\left\{\begin{array}{l}{g(m)=m}\\{g(n)=n}\end{array}\right.$?關(guān)于x的方程在定義域D內(nèi)有兩個(gè)不等的實(shí)數(shù)根.
即(ax-2a)(ax-3a)=ax在定義域D內(nèi)有兩個(gè)不等的實(shí)數(shù)根.(*)
設(shè)t=ax,則(*)?(t-2a)(t-3a)=t,即t2-(5a+1)t+6a2=0在(3a,+∞)內(nèi)有兩個(gè)不等的實(shí)數(shù)根,
令t2-(5a+1)t+6a2=P(t),
則$\left\{\begin{array}{l}{a>0,且a≠1}\\{△=(5a+1)^{2}-24{a}^{2}>0}\\{\frac{5a+1}{2}>3a}\\{p(3a)>0}\end{array}\right.$,解得:a無解.
所以函數(shù)g(x)不存在“好區(qū)間”.
(3)由題設(shè),函數(shù)P(x)=$\frac{({t}^{2}+t)x-1}{{t}^{2}x}$=$\frac{t+1}{t}-\frac{1}{{t}^{2}x}$(t∈R,t≠0)有“好區(qū)間”[m,n],其定義域?yàn)椋?∞,0)∪(0,+∞),
∴[m,n]⊆(-∞,0)或[m,n]⊆(0,+∞),
根據(jù)反比例的性質(zhì),函數(shù)P(x)=$\frac{t+1}{t}-\frac{1}{{t}^{2}x}$在[n,m]上單調(diào)遞增,
則$\left\{\begin{array}{l}{p(m)=m}\\{p(n)=n}\end{array}\right.$,所以m,n是方程p(x)=x實(shí)數(shù)根.
即方程t2x2-(t2+t)x+1=0有同號(hào)的相異實(shí)數(shù)根.
∵mn=$\frac{1}{{t}^{2}}$>0,mn同號(hào),
∴△=(t2+t)-4t2>0或t<-3,解得:t>1或t<-3.
m-n=$\sqrt{(n+m)^{2-4mn}}=\sqrt{-3(\frac{1}{t}-\frac{1}{3})^{2}+\frac{4}{3}}$,
當(dāng)t=3,n-m得最大值$\frac{2\sqrt{3}}{3}$.
點(diǎn)評(píng) 本題考查了新定義的理解和運(yùn)用,二次函數(shù)的性質(zhì)及運(yùn)用化簡(jiǎn)計(jì)算能力和知識(shí)點(diǎn)的延升綜合運(yùn)用.屬于難題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3\root{3}{2}}{2}$ | B. | $\frac{2\root{3}{3}}{3}$ | C. | $\frac{3}{2}$$\sqrt{3}$ | D. | $\frac{2}{3}\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com