給出下列命題,其中正確命題的個數(shù)是( 。
①已知a,b,m都是正數(shù),
a+m
b+m
a
b
,則a<b;
②已知a>1,若ax>ay>1,則xa>ya;
③|x|≤1,且|y|≤1”是“|x+y|≤2”的充分不必要條件;
④命題“?x∈R,使得x2-2x+1<0”的否定是“?x∈R,使得x2-2x+1≥0”.
分析:采用逐個驗證的方法,①可用作差法證明,②利用指數(shù)函數(shù)和冪函數(shù)的圖象性質(zhì)可得,③為充要條件的判斷,借助三角不等式可證,④為特稱命題的否定,顯然是假命題.
解答:解:∵
a+m
b+m
-
a
b
=
b(a+m)-a(b+m)
b(b+m)
=
m(b-a)
b(b+m)
>0,a,b,m都是正數(shù),∴a<b,故①為真命題;
由指數(shù)函數(shù)的圖象和性質(zhì)知,a>1,若ax>ay>1,則必有,x>y>0,再由冪函數(shù)的性質(zhì)知,xa>ya,故②為真命題;
由三角不等式可知,|x|≤1,且|y|≤1”,則“|x+y|≤|x|+|y|≤2”,而由|x+y|≤2,
不能推出|x|≤1,且|y|≤1,例如取x=0,y=2,滿足|x+y|≤2,但不滿足|x|≤1,且|y|≤1,故③為真命題;
“?x∈R,使得x2-2x+1<0”的否定是“任意x∈R,使得x2-2x+1≥0”.故④為假命題.即正確命題個數(shù)為3.
故選C.
點評:本題為命題真假的判斷,涉及不等式,函數(shù),命題的否定,要逐個判斷,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,邊長為a的正△ABC的中線AF與中位線DE相交于G,已知△A′ED是△AED繞DE旋轉(zhuǎn)過程中的一個圖形,現(xiàn)給出下列命題,其中正確的命題有
(1)(2)(3)
(1)(2)(3)
.(填上所有正確命題的序號) 
(1)動點A′在平面ABC上的射影在線段AF上;
(2)三棱錐A′-FED的體積有最大值;
(3)恒有平面A′GF⊥平面BCED;
(4)異面直線A′E與BD不可能互相垂直.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011屆山東省濟寧一中高三第三次月考理科數(shù)學(xué)卷 題型:填空題


如圖,邊長為a的正△ABC的中線AF與中位線DE相交于G,已知△A′ED是△AED繞DE旋轉(zhuǎn)過程中的一個圖形,現(xiàn)給出下列命題,其中正確的命題有           .

①動點A′在平面ABC上的射影在線段AF上;
②三棱錐A′—FED的體積有最大值;
③恒有平面A′GF⊥平面BCED;
④異面直線A′E與BD不可能互相垂直;
⑤異面直線FE與A′D所成角的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011屆河南省許昌市三校高三上學(xué)期期末數(shù)學(xué)理卷 題型:填空題

如圖,邊長為a的正△ABC的中線AF與中位線DE相交于G,已知△A′ED是△AED繞DE旋轉(zhuǎn)過程中的一個圖形,現(xiàn)給出下列命題,其中正確的命題有           (只需填上正確命題的序號).
①動點A′在平面ABC上的射影在線段AF上;
②三棱錐A′—FED的體積有最大值;
③恒有平面A′GF⊥平面BCED;
④異面直線A′E與BD不可能互相垂直;
⑤異面直線FE與A′D所成角的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年河南省許昌市三校高三上學(xué)期期末數(shù)學(xué)理卷 題型:填空題

如圖,邊長為a的正△ABC的中線AF與中位線DE相交于G,已知△A′ED是△AED繞DE旋轉(zhuǎn)過程中的一個圖形,現(xiàn)給出下列命題,其中正確的命題有            (只需填上正確命題的序號).

    ①動點A′在平面ABC上的射影在線段AF上;

    ②三棱錐A′—FED的體積有最大值;

    ③恒有平面A′GF⊥平面BCED;

    ④異面直線A′E與BD不可能互相垂直;

    ⑤異面直線FE與A′D所成角的取值范圍是

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年山東省高三第三次月考理科數(shù)學(xué)卷 題型:填空題

 

如圖,邊長為a的正△ABC的中線AF與中位線DE相交于G,已知△A′ED是△AED繞DE旋轉(zhuǎn)過程中的一個圖形,現(xiàn)給出下列命題,其中正確的命題有            .

    ①動點A′在平面ABC上的射影在線段AF上;

    ②三棱錐A′—FED的體積有最大值;

    ③恒有平面A′GF⊥平面BCED;

    ④異面直線A′E與BD不可能互相垂直;

    ⑤異面直線FE與A′D所成角的取值范圍是

 

查看答案和解析>>

同步練習(xí)冊答案