【題目】已知為坐標原點,點在圓:上.
(1)求實數(shù)的值;
(2)求過圓心且與直線平行的直線的方程;
(3)過點作互相垂直的直線,,與圓交于兩點,與圓交于兩點,求的最大值.
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中.直線1的參數(shù)方程為(t為參數(shù)).在以坐標原點為極點,x軸的非負半軸為極軸的極坐標系中.曲線C的極坐標方程為ρ=2cosθ.
(1)若曲線C關于直線l對稱,求a的值;
(2)若A、B為曲線C上兩點.且∠AOB,求|OA|+|OB|的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】紅鈴蟲是棉花的主要害蟲之一,能對農(nóng)作物造成嚴重傷害,每只紅鈴蟲的平均產(chǎn)卵數(shù)y和平均溫度x有關,現(xiàn)收集了以往某地的7組數(shù)據(jù),得到下面的散點圖及一些統(tǒng)計量的值.(表中)
平均溫度 | 21 | 23 | 25 | 27 | 29 | 32 | 35 | ||
平均產(chǎn)卵數(shù)/個 | 7 | 11 | 21 | 24 | 66 | 115 | 325 | ||
27.429 | 81.286 | 3.612 | 40.182 | 147.714 | |||||
(1)根據(jù)散點圖判斷,與(其中自然對數(shù)的底數(shù))哪一個更適宜作為平均產(chǎn)卵數(shù)y關于平均溫度x的回歸方程類型?(給出判斷即可,不必說明理由)并由判斷結果及表中數(shù)據(jù),求出y關于x的回歸方程.(計算結果精確到小數(shù)點后第三位)
(2)根據(jù)以往統(tǒng)計,該地每年平均溫度達到28℃以上時紅鈴蟲會造成嚴重傷害,需要人工防治,其他情況均不需要人工防治記該地每年平均溫度達到28℃以上的概率為.
①記該地今后5年中,恰好需要3次人工防治的概率為,求的最大值,并求出相應的概率p.
②當取最大值時,記該地今后5年中,需要人工防治的次數(shù)為X,求X的數(shù)學期望和方差.
附:線性回歸方程系數(shù)公式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q為AD的中點,PA=PD=AD=2,BC=1,.
(1)求證:平面PQB⊥平面PAD;
(2)若M是棱PC上的一點,且滿足,求二面角M﹣BQ﹣C的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,直線與橢圓的兩交點間距離為.
(1)求橢圓的方程;
(2)如圖,設是橢圓上的一動點,由原點向圓引兩條切線,分別交橢圓于點,若直線的斜率均存在,并分別記為,求證:為定值.
(3)在(2)的條件下,試問是否為定值?若是,求出該值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設橢圓的離心率為,且經(jīng)過點.
(1)求橢圓的標準方程;
(2)設直線與橢圓交兩點,是坐標原點,分別過點作,的平行線,兩平行線的交點剛好在橢圓上,判斷是否為定值?若為定值,求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若不等式的解集為,求實數(shù)的值;
(2)若在(1)的條件下,存在實數(shù),使成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】計算機誕生于20世紀中葉,是人類最偉大的技術發(fā)明之一.計算機利用二進制存儲信息,其中最基本單位是“位(bit)”,1位只能存放2種不同的信息:0或1,分別通過電路的斷或通來實現(xiàn).“字節(jié)(Byte)”是更大的存儲單位,1Byte=8bit,因此1字節(jié)可存放從00000000(2)至11111111(2)共256種不同的信息.將這256個二進制數(shù)中,恰有相鄰三位數(shù)是1,其余各位數(shù)均是0的所有數(shù)相加,則計算結果用十進制表示為( )
A.378B.441C.742D.889
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com