【題目】已知A、B、C為三個銳角,且A+B+C=π,若向量 =(2sinA﹣2,cosA+sinA)與向量 =(cosA﹣sinA,1+sinA)是共線向量. (Ⅰ)求角A;
(Ⅱ)求函數(shù)y=2sin2B+cos 的最大值.
【答案】解:①∵ =(sinA﹣cosA,1+sinA),且 共線, 可得(2﹣2sinA)(1+sinA)﹣(sinA﹣cosA)(cosA+sinA)=0,化簡可得sinA=± .
又△ABC是銳角三角形,∴sinA= .
②由A= 得B+C= ,即C= ﹣B,
y=2sin2B+cos
=1﹣cos2B+cos sin2B
=1+sin2Bcos ,
∵ ,∴ ,∴ <2B<π,∴ ,
∴ .故 .
因此函數(shù)y=2sin2B+cos 的值域?yàn)椋? ,2],故函數(shù)y的最大值等于2
【解析】(1)由已知 ,利用向量共線的條件及A為銳角整理可得,sinA= ,從而可求角A的值.(2)結(jié)合(1)中的條件可把所求函數(shù)式化簡得, ,利用輔助角公式可得y=sin(2B﹣ )+1,結(jié)合題中銳角三角形的條件可求B的范圍,進(jìn)而求出函數(shù)的值域,從而得到函數(shù)的最大值.
【考點(diǎn)精析】利用兩角和與差的正弦公式和二倍角的余弦公式對題目進(jìn)行判斷即可得到答案,需要熟知兩角和與差的正弦公式:;二倍角的余弦公式:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以邊長為的正三角形的頂點(diǎn)為坐標(biāo)原點(diǎn),另外兩個頂點(diǎn)在拋物線上,過拋物線的焦點(diǎn)的直線過交拋物線于兩點(diǎn).
(1)求拋物線的方程;
(2)求證: 為定值;
(3)求線段的中點(diǎn)的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位建造一間背面靠墻的小房,地面面積為12m2 , 房屋正面每平方米造價為1200元,房屋側(cè)面每平方米造價為800元,屋頂?shù)脑靸r為5800元,如果墻高為3m,且不計房屋背面和地面的費(fèi)用,設(shè)房屋正面地面的邊長為xm,房屋的總造價為y元.
(1)求y用x表示的函數(shù)關(guān)系式;
(2)怎樣設(shè)計房屋能使總造價最低?最低總造價是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)O為坐標(biāo)原點(diǎn),曲線x2+y2+2x﹣6y+1=0上有兩點(diǎn)P、Q,滿足關(guān)于直線x+my+4=0對稱,又滿足 =0.
(1)求m的值;
(2)求直線PQ的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)當(dāng)時,求的單調(diào)區(qū)間;
(2)令,區(qū)間, 為自然對數(shù)的底數(shù)。
(ⅰ)若函數(shù)在區(qū)間上有兩個極值,求實(shí)數(shù)的取值范圍;
(ⅱ)設(shè)函數(shù)在區(qū)間上的兩個極值分別為和,
求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)A(0,﹣2),橢圓E: =1(a>b>0)的離心率為 ,F(xiàn)是橢圓的焦點(diǎn),直線AF的斜率為 ,O為坐標(biāo)原點(diǎn).
(1)求E的方程;
(2)設(shè)過點(diǎn)A的直線l與E相交于P,Q兩點(diǎn),當(dāng)△OPQ的面積最大時,求l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下三個關(guān)于圓錐曲線的命題中:
①設(shè)A,B為兩個定點(diǎn),K為非零常數(shù),若|PA|﹣|PB|=K,則動點(diǎn)P的軌跡是雙曲線.
②方程2x2﹣5x+2=0的兩根可分別作為橢圓和雙曲線的離心率
③雙曲線 與橢圓 +y2=1有相同的焦點(diǎn).
④已知拋物線y2=2px,以過焦點(diǎn)的一條弦AB為直徑作圓,則此圓與準(zhǔn)線相切
其中真命題為(寫出所以真命題的序號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com