設(shè)集合M={x|x2-7x+12≥0,x∈R},N={x||x+1|<1},Q={x|x-a≥0},令P=M∩N.求:
(1)求集合P.
(2)若P⊆Q,a的最大值.
考點(diǎn):集合關(guān)系中的參數(shù)取值問題,集合的包含關(guān)系判斷及應(yīng)用
專題:不等式的解法及應(yīng)用
分析:(1)解一元二次不等式求得M,解絕對值不等式求得N,再根據(jù)兩個集合的交集的定義求得P=M∩N.
(2)根據(jù)P⊆Q,求得a的范圍,從而得到a的最大值.
解答: 解:(1)由x2-7x+12≥0可得:(x-3)(x-4)≥0,…(1分)   解得x≤3或x≥4,…(2分)
由|x+1|<1可得-1<x+1<1,…(3分)   得到:-2<x<0.…(4分)
所以M={x|x≤3或x≥4},N={x|-2<x<0}…(5分)
所以P=M∩N=N={x|-2<x<0}.…(7分)
(2)由于 Q={x|x≥a},…(8分)
P⊆Q,則a≤-2,…(9分)
故a的最大值為-2.…(10分)
點(diǎn)評:本題主要考查集合關(guān)系中參數(shù)的取值范圍問題,一元二次不等式、絕對值不等式的解法,集合間的包含關(guān)系,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知正△ABC的邊長為2,
BD
=4
BC
,則
AD
AC
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線mx+3y-4=0與圓(x+2)2+y2=5相交于A、B兩點(diǎn),若|AB|=2,則實(shí)數(shù)m的值為( 。
A、
5
2
B、0或-
5
4
C、±
5
2
D、
5
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點(diǎn)A(1,2,3)在坐標(biāo)平面yOz內(nèi)的射影是點(diǎn)B的坐標(biāo)是( 。
A、(0,2,3)
B、(1,0,3)
C、(1,2,0)
D、(1,0,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

證明下列不等式
(1)a2+b2+5≥2(2a-b)(a,b∈R) 
(2)
b+c
a
+
c+a
b
+
a+b
c
≥6
(a,b,c為正實(shí)數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=log
1
2
(-x2+3x+10)
的增區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x)和g(x)滿足g(x)≠0,f'(x)•g(x)>f(x)•g'(x),f(x)=ax•g(x),
f(1)
g(1)
+
f(-1)
g(-1)
=
5
2
.令an=
f(n)
g(n)
,則使數(shù)列{an}的前n項和Sn超過100的最小自然數(shù)n的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)是定義在R上的偶函數(shù),且對任意實(shí)數(shù)x,都有f(x+1)=f(x-1)成立.已知當(dāng)x∈[1,2]時,f(x)=logax.
(1)求x∈[-1,1]時,函數(shù)f(x)的表達(dá)式;
(2)若函數(shù)f(x)的最大值為
1
2
,在區(qū)間[-1,3]上,解關(guān)于x的不等式f(x)>
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

由直線y=x-3上的點(diǎn)向圓(x+2)2+(y-3)2=1引切線,則切線長的最小值為(  )
A、
31
B、4
2
C、
33
D、
29

查看答案和解析>>

同步練習(xí)冊答案