已知i,m、n是正整數(shù),且1<i≤m<n.
(1)證明: niA<miA
(2)證明: (1+m)n>(1+n)m
證明過程略
(1)對(duì)于1<i≤m,且A =m·…·(m-i+1),
,
由于m<n,對(duì)于整數(shù)k=1,2,…,i-1,有,
所以
(2)由二項(xiàng)式定理有:
(1+m)n=1+Cm+Cm2+…+Cmn,
(1+n)m=1+Cn+Cn2+…+Cnm,
由(1)知miA>niA (1<i≤m,而C=
∴miCin>niCim(1<m<n
∴m0C=n0C=1,mC=nC=m·n,m2C>n2C,…,
mmC>nmC,mm+1C>0,…,mnC>0,
∴1+Cm+Cm2+…+Cmn>1+Cn+C2mn2+…+Cnm,
即(1+m)n>(1+n)m成立。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(01全國卷理) (12分)
已知i,m,n是正整數(shù),且1<i≤m<n.
(Ⅰ)證明;
(Ⅱ)證明(1+m) n> (1+n) m.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:高考數(shù)學(xué)一輪復(fù)習(xí)必備(第119-122課時(shí)): 不等式問題的題型與方法(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com