精英家教網 > 高中數學 > 題目詳情

已知是橢圓的兩個焦點,是橢圓上的點,且
(1)求的周長;
(2)求點的坐標.

解:橢圓中,長半軸,焦距
(1)根據橢圓定義,
所以,的周長為
(2)設點坐標為
得,



,則
∴點坐標為

解析

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

在平面直角坐標系中,橢圓
(1)若一直線與橢圓交于兩不同點,且線段恰以點為中點,求直線的方程;
(2)若過點的直線(非軸)與橢圓相交于兩個不同點試問在軸上是否存在定點,使恒為定值?若存在,求出點的坐標及實數的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知拋物線,點關于軸的對稱點為,直線過點交拋物線于兩點.
(1)證明:直線的斜率互為相反數; 
(2)求面積的最小值;
(3)當點的坐標為,.根據(1)(2)推測并回答下列問題(不必說明理由):①直線的斜率是否互為相反數? ②面積的最小值是多少?

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,曲線C1是以原點O為中心,F1、F2為焦點的橢圓的一部分,曲線C2是以原點O為頂點,F2為焦點的拋物線的一部分,是曲線C1和C2的交點.
(Ⅰ)求曲線C1和C2所在的橢圓和拋物線的方程;
(Ⅱ)過F2作一條與x軸不垂直的直線,分別與曲線C1、C2依次交于B、C、D、E四點,若G為CD中點,H為BE中點,問是否為定值,若是,求出定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

在圓上任取一點,過點軸的垂線段,為垂足.當點在圓上運動時,線段的中點形成軌跡
(1)求軌跡的方程;
(2)若直線與曲線交于兩點,為曲線上一動點,求面積的最大值

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本題滿分12分)已知是橢圓的兩個焦點,是橢圓上的點,且
(1)求的周長;   
(2)求點的坐標

查看答案和解析>>

科目:高中數學 來源: 題型:解答題


查看答案和解析>>

科目:高中數學 來源: 題型:單選題

過點且平行于極軸的直線的極坐標方程是(  )

A.ρcosθ=4B.ρsinθ=4 C.ρsinθ=D.ρcosθ=

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知橢圓的中心是坐標原點,焦點在坐標軸上,且橢圓過點三點.
(1)求橢圓的方程;
(2)若點為橢圓上不同于的任意一點,,求內切圓的面積的最大值,并指出其內切圓圓心的坐標.

查看答案和解析>>

同步練習冊答案