【題目】已知梯形如圖(1)所示,其中, ,四邊形是邊長(zhǎng)為的正方形,現(xiàn)沿進(jìn)行折疊,使得平面平面,得到如圖(2)所示的幾何體.

(Ⅰ)求證:平面平面;

(Ⅱ)已知點(diǎn)在線段上,且平面,求與平面所成角的正弦值.

【答案】(1)見(jiàn)解析;(2)與平面所成角的正弦值為.

【解析】試題分析:(1)要證面面垂直,可先證線線垂直,先由線面關(guān)系得到,為正方形得,進(jìn)而得到平面,從而得到面面垂直;(2)建立空間坐標(biāo)系,分別求得面的法向量和線的方向向量,由向量夾角公式求得線面角.

解析:

(Ⅰ)證明:由平面平面 ,

平面平面, 平面,

平面,又平面,

為正方形得,

, 平面

平面,

又∵平面,

∴平面平面.

(Ⅱ)由平面, ,

故以為原點(diǎn), , 所在直線分別為軸, 軸, 軸建立圖示空間直角坐標(biāo)系,則, , , ,

設(shè),則,

設(shè)平面的一個(gè)法向量為,

,

,

平面

, ,

,

設(shè)與平面所成的角為,則

,

與平面所成角的正弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知的面積為,且,

(Ⅰ)若 的圖象與直線相鄰兩個(gè)交點(diǎn)間的最短距離為,且,求的面積;

(Ⅱ)求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市縣鄉(xiāng)教師流失現(xiàn)象非常嚴(yán)重,為了縣鄉(xiāng)孩子們能接受良好教育,某市今年要為兩所縣鄉(xiāng)中學(xué)招聘儲(chǔ)備未來(lái)三年的教師,現(xiàn)在每招聘一名教師需要1萬(wàn)元,若三年后教師嚴(yán)重短缺時(shí)再招聘,由于各種因素,則每招聘一名教師需要3萬(wàn)元,已知現(xiàn)在該市縣鄉(xiāng)中學(xué)無(wú)多余教師,為決策應(yīng)招聘多少縣鄉(xiāng)教師搜集并整理了該市50所縣鄉(xiāng)中學(xué)在過(guò)去三年內(nèi)的教師流失數(shù),得到如表的頻率分布表:

流失教師數(shù)

6

7

8

9

頻數(shù)

10

15

15

10

以這50所縣鄉(xiāng)中學(xué)流失教師數(shù)的頻率代替一所縣鄉(xiāng)中學(xué)流失教師數(shù)發(fā)生的概率,記表示兩所縣鄉(xiāng)中學(xué)在過(guò)去三年共流失的教師數(shù), 表示今年為兩所縣鄉(xiāng)中學(xué)招聘的教師數(shù).為保障縣鄉(xiāng)孩子教育不受影響,若未來(lái)三年內(nèi)教師有短缺,則第四年馬上招聘.

(1)求的分布列;

(2)若要求,確定的最小值;

(3)以未來(lái)四年內(nèi)招聘教師所需費(fèi)用的期望值為決策依據(jù),在之中選其一,應(yīng)選用哪個(gè)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雞的產(chǎn)蛋量與雞舍的溫度有關(guān),為了確定下一個(gè)時(shí)段雞舍的控制溫度,某企業(yè)需要了解雞舍的溫度 (單位:),對(duì)某種雞的時(shí)段產(chǎn)蛋量(單位:) 和時(shí)段投入成本(單位:萬(wàn)元)的影響,為此,該企業(yè)收集了7個(gè)雞舍的時(shí)段控制溫度和產(chǎn)蛋量的數(shù)據(jù),對(duì)數(shù)據(jù)初步處理后得到了如圖所示的散點(diǎn)圖和表中的統(tǒng)計(jì)量的值.

其中.

(1)根據(jù)散點(diǎn)圖判斷,哪一個(gè)更適宜作為該種雞的時(shí)段產(chǎn)蛋量關(guān)于雞舍時(shí)段控制溫度的回歸方程類型?(給判斷即可,不必說(shuō)明理由)

(2)若用作為回歸方程模型,根據(jù)表中數(shù)據(jù),建立關(guān)于的回歸方程;

(3)已知時(shí)段投入成本的關(guān)系為,當(dāng)時(shí)段控制溫度為時(shí),雞的時(shí)段產(chǎn)蛋量及時(shí)段投入成本的預(yù)報(bào)值分別是多少?

附:①對(duì)于一組具有線性相關(guān)關(guān)系的數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)分別為,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐的底面是直角梯形, , ,

,點(diǎn)在線段上,且, 平面.

1)求證:平面平面;

2)當(dāng)四棱錐的體積最大時(shí),求四棱錐的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知空間幾何體中, 均為邊長(zhǎng)為的等邊三角形, 為腰長(zhǎng)為的等腰三角形,平面平面,平面平面.

試在平面內(nèi)作一條直線,使得直線上任意一點(diǎn)的連線均與平面平行,并給出詳細(xì)證明;

求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】【2018江蘇南京師大附中、天一、海門(mén)、淮陰四校高三聯(lián)考如圖,一只螞蟻從單位正方體的頂點(diǎn)出發(fā),每一步(均為等可能性的)經(jīng)過(guò)一條邊到達(dá)另一頂點(diǎn),設(shè)該螞蟻經(jīng)過(guò)步回到點(diǎn)的概率

(I)分別寫(xiě)出的值;

(II)設(shè)頂點(diǎn)出發(fā)經(jīng)過(guò)步到達(dá)點(diǎn)的概率為,求的值;

(III)求

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2016年10月9日,教育部考試中心下發(fā)了《關(guān)于2017年普通高考考試大綱修訂內(nèi)容的通知》,在各科修訂內(nèi)容中明確提出,增加中華優(yōu)秀傳統(tǒng)文化的考核內(nèi)容,積極培育和踐行社會(huì)主義核心價(jià)值觀,充分發(fā)揮高考命題的育人功能和積極導(dǎo)向作用.宿州市教育部門(mén)積極回應(yīng),編輯傳統(tǒng)文化教材,在全市范圍內(nèi)開(kāi)設(shè)書(shū)法課,經(jīng)典誦讀等課程.為了了解市民對(duì)開(kāi)設(shè)傳統(tǒng)文化課的態(tài)度,教育機(jī)構(gòu)隨機(jī)抽取了200位市民進(jìn)行了解,發(fā)現(xiàn)支持開(kāi)展的占,在抽取的男性市民120人中持支持態(tài)度的為80人.

(Ⅰ)完成列聯(lián)表并判斷是否有的把握認(rèn)為性別與支持與否有關(guān)

(Ⅱ)為了進(jìn)一步征求對(duì)開(kāi)展傳統(tǒng)文化的意見(jiàn)和建議,從抽取的200位市民中對(duì)不支持的按照分層抽樣的方法抽取5位市民,并從抽取的5人中再隨機(jī)選取2人進(jìn)行座談,求選取的2人恰好為1男1女的概率.

附: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知分別是橢圓的左、右焦點(diǎn), 是橢圓上一點(diǎn),且.

(1)求橢圓的方程;

(2)設(shè)直線與橢圓交于兩點(diǎn),且,試求點(diǎn)到直線的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案