已知橢圓長軸|A1A2|=6焦距|F1F2|=,過橢圓焦點F1作一直線,交橢圓于兩點M、N.設∠F2F1M=α(0≤α<π),當α取什么值時|MN|的長等于橢圓的短軸.

答案:
解析:

  (1)的中點為原點,建立直角坐標系,如圖:

  

  

  

  化簡得


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知半橢圓
x2
a2
+
y2
b2
=1(x≥0)
與半橢圓
y2
b2
+
x2
c2
=1(x≤0)
組成的曲線稱為“果圓”,其中a2=b2+c2,a>0,b>c>0.如圖,設點F0,F(xiàn)1,F(xiàn)2是相應橢圓的焦點,A1,A2和B1,B2是“果圓”與x,y軸的交點,
(1)若三角形F0F1F2是邊長為1的等邊三角形,求“果圓”的方程;
(2)若|A1A|>|B1B|,求
b
a
的取值范圍;
(3)一條直線與果圓交于兩點,兩點的連線段稱為果圓的弦.是否存在實數(shù)k,使得斜率為k的直線交果圓于兩點,得到的弦的中點的軌跡方程落在某個橢圓上?若存在,求出所有k的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓,其長軸為A1A,P是橢圓上不同于的A1、A的一個動點,直線PA、PA1分別與同一條準線l交于M、M1兩點,試證明:以線段MM1為直徑的圓必經(jīng)過橢圓外的 一個定點。

查看答案和解析>>

科目:高中數(shù)學 來源:上海高考真題 題型:解答題

已知半橢圓與半橢圓組成的曲線稱為“果圓”,其中a2=b2+
c2,a>0,b>c>0。如圖,設點F0,F(xiàn)1,F(xiàn)2是相應橢圓的焦點,A1,A2和B1,B2是“果圓”與x,y軸的交點,
(1)若三角形F0F1F2是邊長為1的等邊三角形,求“果圓”的方程;
(2)若|A1A|>|B1B|,求的取值范圍;
(3)一條直線與果圓交于兩點,兩點的連線段稱為果圓的弦。是否存在實數(shù)k,使得斜率為k的直線交果圓于兩點,得到的弦的中點的軌跡方程落在某個橢圓上?若存在,求出所有k的值;若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年山東省聊城一中(東校區(qū))高三一輪復習綜合檢測數(shù)學試卷(理科)(解析版) 題型:解答題

已知半橢圓與半橢圓組成的曲線稱為“果圓”,其中a2=b2+c2,a>0,b>c>0.如圖,設點F,F(xiàn)1,F(xiàn)2是相應橢圓的焦點,A1,A2和B1,B2是“果圓”與x,y軸的交點,
(1)若三角形FF1F2是邊長為1的等邊三角形,求“果圓”的方程;
(2)若|A1A|>|B1B|,求的取值范圍;
(3)一條直線與果圓交于兩點,兩點的連線段稱為果圓的弦.是否存在實數(shù)k,使得斜率為k的直線交果圓于兩點,得到的弦的中點的軌跡方程落在某個橢圓上?若存在,求出所有k的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2007年上海市高考數(shù)學試卷(理科)(解析版) 題型:解答題

已知半橢圓與半橢圓組成的曲線稱為“果圓”,其中a2=b2+c2,a>0,b>c>0.如圖,設點F,F(xiàn)1,F(xiàn)2是相應橢圓的焦點,A1,A2和B1,B2是“果圓”與x,y軸的交點,
(1)若三角形FF1F2是邊長為1的等邊三角形,求“果圓”的方程;
(2)若|A1A|>|B1B|,求的取值范圍;
(3)一條直線與果圓交于兩點,兩點的連線段稱為果圓的弦.是否存在實數(shù)k,使得斜率為k的直線交果圓于兩點,得到的弦的中點的軌跡方程落在某個橢圓上?若存在,求出所有k的值;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案