【題目】某闖關(guān)游戲共有兩關(guān),游戲規(guī)則:先闖第一關(guān),當?shù)谝魂P(guān)闖過后,才能進入第二關(guān),兩關(guān)都闖過,則闖關(guān)成功,且每關(guān)各有兩次闖關(guān)機會.已知闖關(guān)者甲第一關(guān)每次闖過的概率均為,第二關(guān)每次闖過的概率均為.假設(shè)他不放棄每次闖關(guān)機會,且每次闖關(guān)互不影響.

(1)求甲恰好闖關(guān)3次才闖關(guān)成功的概率;

(2)記甲闖關(guān)的次數(shù)為,求隨機變量的分布列和期望.。

【答案】(1) (2)見解析

【解析】

1)先分類,再分別根據(jù)獨立事件概率乘法公式求解,最后求和得結(jié)果,(2)先確定隨機變量,再分別求對應(yīng)概率,列表得分布列,根據(jù)數(shù)學(xué)期望公式得結(jié)果.

解:(1)設(shè)事件為“甲恰好闖關(guān)次才闖關(guān)成功的概率”,則有

,

(2)由已知得:隨機變量的所有可能取值為,

所以,,

,

.

從而

2

3

4

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市為了解游客人數(shù)的變化規(guī)律,提高旅游服務(wù)質(zhì)量,收集并整理了20171月至201912月期間月接待游客量(單位:萬人)的數(shù)據(jù),繪制了下面的折線圖.根據(jù)該折線圖,下列結(jié)論錯誤的是( 。

A.年接待游客量逐年增加

B.各年的月接待游客量高峰期大致在8

C.20171月至12月月接待游客量的中位數(shù)為30萬人

D.各年1月至6月的月接待游客量相對于7月至12月,波動性更小,變化比較平穩(wěn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于無窮數(shù)列,若對任意,滿足是與無關(guān)的常數(shù)),則稱數(shù)列數(shù)列.

(1)若),判斷數(shù)列是否為數(shù)列,說明理由;

(2)設(shè),求證:數(shù)列數(shù)列,并求常數(shù)的取值范圍;

(3)設(shè)數(shù)列),問數(shù)列是否為數(shù)列?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】新高考3+3最大的特點就是取消文理科,除語文、數(shù)學(xué)、外語之外,從物理、化學(xué)、生物、政治、歷史、地理這6科中自由選擇三門科目作為選考科目.某研究機構(gòu)為了了解學(xué)生對全理(選擇物理、化學(xué)、生物)的選擇是否與性別有關(guān),覺得從某學(xué)校高一年級的650名學(xué)生中隨機抽取男生,女生各25人進行模擬選科.經(jīng)統(tǒng)計,選擇全理的人數(shù)比不選全理的人數(shù)多10人.

1)請完成下面的2×2列聯(lián)表;

選擇全理

不選擇全理

合計

男生

5

女生

合計

2)估計有多大把握認為選擇全理與性別有關(guān),并說明理由;

3)現(xiàn)從這50名學(xué)生中已經(jīng)選取了男生3名,女生2名進行座談,從中抽取2名代表作問卷調(diào)查,求至少抽到一名女生的概率.

附:,其中

015

010

005

0025

0010

0005

0001

2072

2076

3841

5024

6635

7879

10828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年國際籃聯(lián)籃球世界杯,將于2019年在的北京、廣州、南京、上海、武漢、深圳、佛山、東莞八座城市舉行.為了宣傳世界杯,某大學(xué)從全校學(xué)生中隨機抽取了名學(xué)生,對是否收看籃球世界杯賽事的情況進行了問卷調(diào)查,統(tǒng)計數(shù)據(jù)如下:

會收看

不會收看

男生

60

20

女生

20

20

(1)根據(jù)上表說明,能否有的把握認為收看籃球世界杯賽事與性別有關(guān)?

(2)現(xiàn)從參與問卷調(diào)查且收看籃球世界杯賽事的學(xué)生中,采用按性別分層抽樣的方法選取人參加2019年國際籃聯(lián)籃球世界杯賽志愿者宣傳活動.

(i)求男、女學(xué)生各選取多少人;

(ii)若從這人中隨機選取人到校廣播站開展2019年國際籃聯(lián)籃球世界杯賽宣傳介紹,求恰好選到名男生的概率.

附:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對年利率為的連續(xù)復(fù)利,要在年后達到本利和,則現(xiàn)在投資值為,是自然對數(shù)的底數(shù).如果項目的投資年利率為的連續(xù)復(fù)利.

(1)現(xiàn)在投資5萬元,寫出滿年的本利和,并求滿10年的本利和;(精確到0.1萬元)

(2)一個家庭為剛出生的孩子設(shè)立創(chuàng)業(yè)基金,若每年初一次性給項目投資2萬元,那么,至少滿多少年基金共有本利和超過一百萬元?(精確到1年)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知),,其中為自然對數(shù)的底數(shù).

(1)若恒成立,求實數(shù)的取值范圍;

(2)若在(1)的條件下,當取最大值時,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某產(chǎn)品自生產(chǎn)并投入市場以來,生產(chǎn)企業(yè)為確保產(chǎn)品質(zhì)量,決定邀請第三方檢測機構(gòu)對產(chǎn)品進行質(zhì)量檢測,并依據(jù)質(zhì)量指標來衡量產(chǎn)品的質(zhì)量.當時,產(chǎn)品為優(yōu)等品;當時,產(chǎn)品為一等品;當時,產(chǎn)品為二等品.第三方檢測機構(gòu)在該產(chǎn)品中隨機抽取500件,繪制了這500件產(chǎn)品的質(zhì)量指標的條形圖.用隨機抽取的500件產(chǎn)品作為樣本,估計該企業(yè)生產(chǎn)該產(chǎn)品的質(zhì)量情況,并用頻率估計概率.

(1)從該企業(yè)生產(chǎn)的所有產(chǎn)品中隨機抽取1件,求該產(chǎn)品為優(yōu)等品的概率;

(2)現(xiàn)某人決定購買80件該產(chǎn)品.已知每件成本1000元,購買前,邀請第三方檢測機構(gòu)對要購買的80件產(chǎn)品進行抽樣檢測.買家、企業(yè)及第三方檢測機構(gòu)就檢測方案達成以下協(xié)議:從80件產(chǎn)品中隨機抽出4件產(chǎn)品進行檢測,若檢測出3件或4件為優(yōu)等品,則按每件1600元購買,否則按每件1500元購買,每件產(chǎn)品的檢測費用250元由企業(yè)承擔.記企業(yè)的收益為元,求的分布列與數(shù)學(xué)期望;

(3)商場為推廣此款產(chǎn)品,現(xiàn)面向意向客戶推出“玩游戲,送大獎”活動.客戶可根據(jù)拋硬幣的結(jié)果,操控機器人在方格上行進,已知硬幣出現(xiàn)正、反面的概率都是,方格圖上標有第0格、第1格、第2格、……、第50格.機器人開始在第0格,客戶每擲一次硬幣,機器人向前移動一次,若擲出正面,機器人向前移動一格(從),若擲出反面,機器人向前移動兩格(從),直到機器人移到第49格(勝利大本營)或第50格(失敗大本營)時,游戲結(jié)束,若機器人停在“勝利大本營”,則可獲得優(yōu)惠券.設(shè)機器人移到第格的概率為,試證明是等比數(shù)列,并解釋此方案能否吸引顧客購買該款產(chǎn)品.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

(1)判斷函數(shù)的奇偶性,并說明理由;

(2)當時,直接寫出函數(shù)的單調(diào)區(qū)間(不需證明)

(3)若,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案