拋物線的焦點為,其上的動點在準線上的射影為,若是等邊三角形,則的橫坐標是(  )
A.B.C.D.
A

試題分析:設準線與軸的交點為P,在中,,所以,所以.
點評:拋物線上的點到焦點的距離等于到準線的距離,這條性質(zhì)非常重要,而且經(jīng)常應用,要牢固掌握.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

以橢圓內(nèi)的點M(1,1)為中點的弦所在直線的方程為(   )
A.4x-y-3=0B.x-4y+3=0
C.4x+y-5=0D.x+4y-5=0

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題共14分)
已知橢圓C:,左焦點,且離心率
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線與橢圓C交于不同的兩點不是左、右頂點),且以為直徑的圓經(jīng)過橢圓C的右頂點A.   求證:直線過定點,并求出定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知橢圓的方程是(),它的兩個焦點分別為,且,弦AB(橢圓上任意兩點的線段)過點,則的周長為      

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

雙曲線=1的焦點到漸近線的距離為(   )。
A.2B.2C.D.1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
已知橢圓的右焦點,且,設短軸的一個端點為,原點到直線的距離為,過原點和軸不重合的直線與橢圓相交于兩點,且.
(1)求橢圓的方程;
(2)是否存在過點的直線與橢圓相交于不同的兩點,且使得成立?若存在,試求出直線的方程;若不存在,請說明理由

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)已知橢圓的中心在坐標原點O,長軸長為2,離心率e=,過右焦點F的直線l交橢圓于P、Q兩點.
(Ⅰ)求橢圓的方程;
(Ⅱ)若OP、OQ為鄰邊的平行四邊形是矩形,求滿足該條件的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

與雙曲線的漸近線相切,則的值是 _______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
已知橢圓的中心在原點,焦點在軸上,長軸長是短軸長的2倍且經(jīng)過點M(2,1),平行于OM的直線軸上的截距為交橢圓于A、B兩個不同點.
(1)求橢圓的方程;
(2)求m的取值范圍;
(3)求證直線MA、MB與軸始終圍成一個等腰三角形.

查看答案和解析>>

同步練習冊答案