定長為3的線段AB兩端點(diǎn)A、B分別在軸,軸上滑動,M在線段AB上,且
(1)求點(diǎn)M的軌跡C的方程;
(2)設(shè)過且不垂直于坐標(biāo)軸的動直線交軌跡C于A、B兩點(diǎn),問:線段上是否存在一點(diǎn)D,使得以DA,DB為鄰邊的平行四邊形為菱形?作出判斷并證明。
(1)設(shè)

          (6分)
(2)存在滿足條件的D點(diǎn).
設(shè)滿足條件的點(diǎn)D(0,m),

設(shè)l的方程為:,代入橢圓方程,

設(shè)
                   (8分)
以DA、DB為鄰邊的平行四邊形為菱形,



的方向向量為(1,k),


                (11分)


存在滿足條件的點(diǎn)D.                                       (13分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分10分)已知為坐標(biāo)原點(diǎn),,,是常數(shù)),若                              
(1)求關(guān)于的函數(shù)關(guān)系式;   
(2)若的最大值為,求的值;
(3)當(dāng)(2)成立時,求出單調(diào)區(qū)間。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分18分,其中第1小題5分,第2小題5分,第3小題8分)
在平面直角坐標(biāo)系中,已知為坐標(biāo)原點(diǎn),點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,其中.設(shè).
(1)若,,,求方程在區(qū)間內(nèi)的解集;
(2)若點(diǎn)是過點(diǎn)且法向量為的直線上的動點(diǎn).當(dāng)時,設(shè)函數(shù)的值域為集合,不等式的解集為集合. 若恒成立,求實數(shù)的最大值;
(3)根據(jù)本題條件我們可以知道,函數(shù)的性質(zhì)取決于變量、的值. 當(dāng)時,試寫出一個條件,使得函數(shù)滿足“圖像關(guān)于點(diǎn)對稱,且在取得最小值”.(說明:請寫出你的分析過程.本小題將根據(jù)你對問題探究的完整性和在研究過程中所體現(xiàn)的思維層次,給予不同的評分.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知向量
(1)若x的值;
(2)函數(shù),若恒成立,求實數(shù)c的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知c>0),n, n)(n∈R), 的最小值為1,若動點(diǎn)P同時滿足下列三個條件:①,②(其中);③動點(diǎn)P的軌跡C經(jīng)過點(diǎn)B(0,-1)。
(1)求c值; (2)求曲線C的方程;(3)方向向量為的直線l與曲線C交于不同兩點(diǎn)M、N,若,求k的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分14分)在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),已知向量,
又點(diǎn)
(1)若,求向量
(2)若向量與向量共線,當(dāng)時,且取最大值為4時,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知P是內(nèi)一點(diǎn),且滿足0,記、、的面積依次為、,則等于(     )
A.1:2:3B.1:4:9C.:1D.3:1:2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知向量滿足,,
則△的面積         

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

平面上三點(diǎn)不共線,設(shè),則的面積等于 
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊答案