【題目】一艘輪船在航行中的燃料費(fèi)和它的速度的立方成正比,已知在速度為每小時10公里時的燃料費(fèi)是每小時6元,而其他與速度無關(guān)的費(fèi)用是每小時96元,問此輪船以何種速度航行時,能使行駛每公里的費(fèi)用總和最?

【答案】解:設(shè)船速度為x(x>0)時,燃料費(fèi)用為Q元,則Q=kx3 ,
由6=k×103可得 ,∴ ,
∴總費(fèi)用 ,
,令y′=0得x=20,
當(dāng)x∈(0,20)時,y′<0,此時函數(shù)單調(diào)遞減,
當(dāng)x∈(20,+∞)時,y′>0,此時函數(shù)單調(diào)遞增,
∴當(dāng)x=20時,y取得最小值,
答:此輪船以20公里/小時的速度使行駛每公里的費(fèi)用總和最。
【解析】根據(jù)題意建立相應(yīng)的函數(shù)模型是解決本題的關(guān)鍵.建立起函數(shù)的模型之后,根據(jù)函數(shù)的類型選擇合適的方法求解相應(yīng)的最值問題,充分發(fā)揮導(dǎo)數(shù)的工具作用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面為矩形, , 的中點(diǎn)。

1)證明: 平面;

2)設(shè), ,三棱錐的體積 ,求A到平面PBC的距離。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(x2+ax+a)ex , (a為常數(shù),e為自然對數(shù)的底).
(1)當(dāng)a=0時,求f′(2);
(2)若f(x)在x=0時取得極小值,試確定a的取值范圍;
(3)在(2)的條件下,設(shè)由f(x)的極大值構(gòu)成的函數(shù)為g(a),將a換元為x,試判斷曲線y=g(x)是否能與直線3x﹣2y+m=0(m為確定的常數(shù))相切,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種產(chǎn)品的廣告費(fèi)支出x與銷售額y(單位:百萬元)之間有如下對應(yīng)數(shù)據(jù):

x

2

4

5

6

8

y

30

40

50

60

70



(1)畫出散點(diǎn)圖;
(2)求線性回歸方程;
(3)預(yù)測當(dāng)廣告費(fèi)支出為7百萬元時的銷售額.參考公式:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線與曲線在第一象限和第三象限分別交于點(diǎn)和點(diǎn),分別由點(diǎn)、軸作垂線,垂足分別為、,記四邊形的面積為S.

求出點(diǎn)、的坐標(biāo)及實(shí)數(shù)的取值范圍;

當(dāng)取何值時,S取得最小值,并求出S的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知PA與⊙O相切,A為切點(diǎn),PBC為割線,弦CDAP,ADBC相交于E點(diǎn),FCE上一點(diǎn),且DE2EF·EC.

(1)求證:∠P=∠EDF

(2)求證:CE·EBEF·EP;

(3)若CEBE=3∶2,DE=6,EF=4,求PA的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=sin2x+2 cos2x﹣ ,函數(shù)g(x)=mcos(2x﹣ )﹣2m+3(m>0),若存在x1 , x2∈[0, ],使得f(x1)=g(x2)成立,則實(shí)數(shù)m的取值范圍是(
A.(0,1]
B.[1,2]
C.[ ,2]
D.[ , ]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,且橢圓上一點(diǎn)與橢圓左右兩個焦點(diǎn)構(gòu)成的三角形周長為.

(1)求橢圓的方程;

(2)如圖,設(shè)點(diǎn)為橢圓上任意一點(diǎn),直線和橢圓交于兩點(diǎn),且直線軸分別交于兩點(diǎn),求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sin(ωx+φ) 的最小正周期為π,
(1)求當(dāng)f(x)為偶函數(shù)時φ的值;
(2)若f(x)的圖象過點(diǎn)( , ),求f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

同步練習(xí)冊答案