已知平面向量
a
=(
3
,-1),
b
=(sinx,cosx)
(1)若已知
a
b
,求tanx的值
(2)若已知f(x)=
a
b
,求f(x)的最大值及取得最大值的x的取值集合.
分析:(1)利用兩個(gè)向量垂直的性質(zhì),可得
3
sinx-cosx=0
,從而求得 tanx的值.
(2)化簡(jiǎn)f(x)的 解析式為2sin(x-
π
6
)
,故當(dāng)x-
π
6
=2kπ+
π
2
時(shí),f(x)取的最大值2.
解答:解:(1)∵
a
b
,∴
a
b
=0,∴
3
sinx-cosx=0
,∴tanx=
3
3

(2)f(x)=
3
sinx-cosx=2(
3
2
sinx-
1
2
cosx)
=2(sinxcos
π
6
-cosxsin
π
6
)
=2sin(x-
π
6
)

故當(dāng)x-
π
6
=2kπ+
π
2
時(shí),即x∈{x|x=2kπ+
2
3
π}
,f(x)max=2.
點(diǎn)評(píng):本題考查兩個(gè)向量的數(shù)量積公式,兩個(gè)向量垂直的性質(zhì),以及正弦函數(shù)的最大值,化簡(jiǎn)f(x)的 解析式是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知平面向量
a
=(
3
,-1),
b
=(
1
2
,
3
2
).
(I)若存在實(shí)數(shù)k和t,使得
x
=
a
+(t2-3)
b
,
y
=-k
a
+
b
,且
x
y
,試求函數(shù)的關(guān)系式k=f(t);
(II)根據(jù)(I)結(jié)論,確定k=f(t)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知平面向量
a
=(
3
,-1),
b
=(
1
2
,
3
2
).
(1)證明:|
a
+
b
|=|
a
-
b
|; 
(2)若存在不同時(shí)為零的實(shí)數(shù)k和t,使
x
=
a
+(t2-3)
b
,
y
=-k
a
+t
b
,且
x
y
,試求函數(shù)關(guān)系式k=f(t);
(3)據(jù)(2)的結(jié)論,討論關(guān)于t的方程f(t)-k=0的解的情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知平面向量
a
=(
3
,-1),
b
=(
1
2
,
3
2
).
(1)證明:
a
b

(2)若存在實(shí)數(shù)k和t,使得x=
a
+(t2-3)
b
,y=-k
a
+t
b
,且x⊥y,試求函數(shù)關(guān)系式k=f(t);
(3)根據(jù)(2)的結(jié)論,確定k=f(t)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2014•江門(mén)模擬)已知平面向量
a
=(λ,-3)
,
b
=(4,-2)
,若
a
b
,則實(shí)數(shù)λ=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知平面向量
a
=(
3
,-1),
b
=(
1
2
,
3
2
).
(1)若存在實(shí)數(shù)k和t,滿(mǎn)足
x
=(t-2)
a
+(t2-t-5)
b
y
=-k
a
+4
b
,且
x
y
,求出k關(guān)于t的關(guān)系式k=f(t);
(2)根據(jù)(1)的結(jié)論,試求出函數(shù)k=f(t)在t∈(-2,2)上的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案