已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的兩焦點(diǎn)與短軸的一個(gè)端點(diǎn)的連線(xiàn)構(gòu)成等腰直角三角形,且直線(xiàn)x-y+b=0是拋物線(xiàn)y2=4x的一條切線(xiàn).
(1)求橢圓C的方程.
(2)過(guò)點(diǎn)S(0,-
1
2
)且斜率為1的直線(xiàn)l交橢圓C于M,N兩點(diǎn),求△OMN的面積.
考點(diǎn):直線(xiàn)與圓錐曲線(xiàn)的綜合問(wèn)題
專(zhuān)題:綜合題,圓錐曲線(xiàn)的定義、性質(zhì)與方程
分析:(1)直線(xiàn)代入拋物線(xiàn)方程,利用直線(xiàn)x-y+b=0與拋物線(xiàn)y2=4x相切,可得△=(2b-4)2-4b2=0,求出b,再利用橢圓
x2
a2
+
y2
b2
=1(a>b>0)的兩焦點(diǎn)與短軸的一個(gè)端點(diǎn)的連線(xiàn)構(gòu)成等腰直角三角形,求出a,即可求橢圓C的方程;
(2)直線(xiàn)l的方程為y=x-
1
2
,與
x2
2
+y2=1聯(lián)立消y,求出|MN|及原點(diǎn)O到直線(xiàn)l的距離,即可求△OMN的面積.
解答: 解:(1)由
x-y+b=0
y2=4x
⇒x2+(2b-4)x+b2=0.
∵直線(xiàn)x-y+b=0與拋物線(xiàn)y2=4x相切,
∴△=(2b-4)2-4b2=0⇒b=1.
∵橢圓
x2
a2
+
y2
b2
=1(a>b>0)的兩焦點(diǎn)與短軸的一個(gè)端點(diǎn)的連線(xiàn)構(gòu)成等腰直角三角形,
∴a=
2
,
∴所求橢圓方程為
x2
2
+y2=1.
(2)由已知得直線(xiàn)l的方程為y=x-
1
2
,與
x2
2
+y2=1聯(lián)立消y得3x2-2x-
3
2
=0.
設(shè)M(x1,y1),N(x2,y2),則x1+x2=
2
3
,x1•x2=-
1
2
,
∴(y1-y22=(x1-x22=(x1+x22-4x1x2=
22
9
,
∴|MN|=
(x1-x2)2+(y1-y2)2
=
2
11
3

又原點(diǎn)O到直線(xiàn)l的距離為d=
1
2
2
,
∴S△OMN=
1
2
×
2
11
3
×
1
2
2
=
22
2
點(diǎn)評(píng):本題考查直線(xiàn)與拋物線(xiàn)的位置關(guān)系,考查橢圓的方程,考查直線(xiàn)與橢圓的位置關(guān)系,考查三角形面積的計(jì)算,正確運(yùn)用韋達(dá)定理是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果loga8>logb8>0,那么a、b間的關(guān)系是( 。
A、0<a<b<1
B、1<a<b
C、0<b<a<1
D、1<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

年齡在60歲(含60歲)以上的人稱(chēng)為老齡人,某小區(qū)的老齡人有350人,他們的健康狀況如下表:
健康指數(shù) 2 1 0 -1
60歲至79歲的人數(shù) 120 133 34 13
80歲及以上的人數(shù) 9 18 14 9
其中健康指數(shù)的含義是:2代表“健康”,1代表“基本健康”,0代表“不健康,但生活能夠自理”,-1代表“生活不能自理”.
(Ⅰ)隨機(jī)訪(fǎng)問(wèn)該小區(qū)一位80歲以下的老齡人,該老人生活能夠自理的概率是多少?
(Ⅱ)按健康指數(shù)大于0和不大于0進(jìn)行分層抽樣,從該小區(qū)的老齡人中抽取5位,并隨機(jī)地訪(fǎng)問(wèn)其中的3位.求被訪(fǎng)問(wèn)的3位老齡人中恰有1位老齡人的健康指數(shù)不大于0的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù){an}滿(mǎn)足:a1+a2+a3+…+an=n-an(n∈N*).
(1)求證:數(shù)列{an-1}是等比數(shù)列;
(2)若bn=(2-n)(an-1),且對(duì)任意的正整數(shù)n,都有bn+
1
4
t≤t2,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

四棱柱ABCD-A1B1C1D1中,AA1⊥底面ABCD,AB∥CD,AB⊥AD,AD=CD=1,AA1=AB=2,E為AA1的中點(diǎn).
(1)求證:B1C1⊥CE;
(2)求二面角B1-CE-C1大小的余弦值;
(3)設(shè)點(diǎn)M在線(xiàn)段C1E上,且直線(xiàn)AM與平面ADD1A1所成角的正弦值為
2
6
,求線(xiàn)段AM的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,邊長(zhǎng)為2的正方形ABCD中,點(diǎn)E是AB的中點(diǎn),點(diǎn)F是BC的中點(diǎn),將△AED,△DCF分別沿DE,DF折起,使A,C兩點(diǎn)重合于點(diǎn)A′.
(1)求證:A′D⊥EF;
(2)求A′到面EFD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)經(jīng)過(guò)點(diǎn)M(
6
,1),離心率為
2
2

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)已知點(diǎn)P(
6
,0),若A,B為已知橢圓上兩動(dòng)點(diǎn),且滿(mǎn)足
PA
PB
=-2,試問(wèn)直線(xiàn)AB是否恒過(guò)定點(diǎn),若恒過(guò)定點(diǎn),請(qǐng)給出證明,并求出該定點(diǎn)的坐標(biāo);若不過(guò),請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理)若函數(shù)f(x)=
x
1+x2
,又記:f1(x)=f(x),fk+1(x)=f(fk(x)),k=1,2,3,…,則f2014(1)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=ax2+x-a,x∈[-1,1]的最大值為M(a),則當(dāng)a∈[-1,1]時(shí)M(a)的最大值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案