拋物線C1:y=x2(p>0)的焦點與雙曲線C2:-y2=1的右焦點的連線交C1于第一象限的點M.若C1在點M處的切線平等于C2的一條漸近線,則p=
A.
B.
C.
D.
科目:高中數(shù)學 來源:數(shù)學教研室 題型:044
x1=1,點P2(x2,2)在拋物線C1:y=x2+A1x+B1上,點A1(x1,0)到P2的距離是A1到C1上點的最短距離,…,點在拋物線:y=x2+AN x+BN上,點(,0)到的距離是 到 上點的最短距離.
(Ⅰ)求x2及C1的方程.
(Ⅱ)證明{}是等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學 來源:學習周報 數(shù)學 人教課標高二版(A選修1-1) 2009-2010學年 第21期 總第177期 人教課標版(A選修1-1) 題型:044
設拋物線C1:y=x2-2x+2與拋物線C2:y=-x2+ax+b在它們一個交點處的切線互相垂直,求a與b之間的關系.
查看答案和解析>>
科目:高中數(shù)學 來源:設計選修數(shù)學-2-2蘇教版 蘇教版 題型:044
已知拋物線c1:y=x2+2x和c2:y=-x2+a.如果直線l同時是c1和c2的切線,稱l是c1和c2的公切線.公切線上兩個切點之間的線段,稱為公切線段.
(1)a取什么值時,c1和c2有且僅有一條公切線?寫出此公切線方程.
(2)若c1和c2有兩條公切線,證明相應的兩條公切線段互相平分.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(05年浙江卷理)(14分)
設點(,0),和拋物線:y=x2+an x+bn(n∈N*),其中an=-2-4n-,由以下方法得到: x1=1,點P2(x2,2)在拋物線C1:y=x2+a1x+b1上,點A1(x1,0)到P2的距離是A1到C1上點的最短距離,…,點在拋物線:y=x2+an x+bn上,點(,0)到的距離是 到 上點的最短距離.
(Ⅰ)求x2及C1的方程.
(Ⅱ)證明{}是等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
x1=1,點P2(x2,2)在拋物線C1:y=x2+a1x+b1上,點A1(x1,0)到P2的距離是A1到C1上點的最短距離,…,點在拋物線:y=x2+an x+bn上,點(,0)到的距離是 到 上點的最短距離.
(Ⅰ)求x2及C1的方程.
(Ⅱ)證明{}是等差數(shù)列.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com