分析 根據(jù)函數(shù)f(x)=$\left\{\begin{array}{l}{x^2}-2(a-2)x-1,x≤1\\{a^x},x>1\end{array}$(a>0,a≠1)在(0,+∞)上是增函數(shù),利用單調(diào)性的定義,建立不等式,即可得出結(jié)論.
解答 解:由題意,$\left\{\begin{array}{l}{a-2≤0}\\{a>1}\\{1-2(a-2)-1≤a}\end{array}\right.$,∴$\frac{4}{3}$≤a≤2,
故答案為$[\frac{4}{3},2]$.
點(diǎn)評(píng) 本題考查函數(shù)的單調(diào)性,考查分段函數(shù),考查學(xué)生的計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=x+1 | B. | y=$\frac{1}{x}$ | C. | y=x3 | D. | y=-x2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{1}{2}$,+∞) | B. | (-∞,$\frac{1}{4}$] | C. | (-∞,0)∪($\frac{1}{2}$,+∞) | D. | [$\frac{1}{2}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{1}{a}$,0) | B. | ($\frac{1}{2a}$,0) | ||
C. | ($\frac{1}{4a}$,0) | D. | a>0 時(shí)為($\frac{1}{4a}$,0),a<0 時(shí)為(-$\frac{1}{4a}$,0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {3} | B. | {0,3} | C. | {-1,4} | D. | {0,3,4} |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com