【題目】已知數列,為其前n項的和,滿足.
(1)求數列的通項公式;
(2)設數列的前n項和為,數列的前n項和為,求證:當時;
(3)若函數的定義域為R,并且,求證.
科目:高中數學 來源: 題型:
【題目】(數學文卷·2017屆重慶十一中高三12月月考第16題) 現介紹祖暅原理求球體體積公式的做法:可構造一個底面半徑和高都與球半徑相等的圓柱,然后在圓柱內挖去一個以圓柱下底面圓心為頂點,圓柱上底面為底面的圓錐,用這樣一個幾何體與半球應用祖暅原理(圖1),即可求得球的體積公式.請研究和理解球的體積公式求法的基礎上,解答以下問題:已知橢圓的標準方程為 ,將此橢圓繞y軸旋轉一周后,得一橄欖狀的幾何體(圖2),其體積等于______.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,曲線C上的點到點的距離與它到直線的距離之比為,圓O的方程為,曲線C與x軸的正半軸的交點為A,過原點O且異于坐標軸的直線與曲線C交于B,C兩點,直線AB與圓O的另一交點為P,直線PD與圓O的另一交點為Q,其中,設直線AB,AC的斜率分別為;
(1)求曲線C的方程,并證明到點M的距離;
(2)求的值;
(3)記直線PQ,BC的斜率分別為、,是否存在常數,使得?若存在,求的值,若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義上的函數,若滿足:對任意,存在常數,都有成立,則稱是上的有界函數,其中稱為函數的上界.
(1)設,判斷在上是否有界函數,若是,請說明理由,并寫出的所有上界的值的集合,若不是,也請說明理由;
(2)若函數在上是以3為上界的有界函數,求實數的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】各項均為正數的數列的前項和為,且對任意正整數,都有.
(1)求數列的通項公式;
(2)如果等比數列共有2016項,其首項與公比均為2,在數列的每相鄰兩項與之間插入個后,得到一個新的數列.求數列中所有項的和;
(3)是否存在實數,使得存在,使不等式成立,若存在,求實數的范圍,若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,當P(x,y)不是原點時,定義P的“伴隨點”為;
當P是原點時,定義P的“伴隨點“為它自身,平面曲線C上所有點的“伴隨點”所構成的曲線定義為曲線C的“伴隨曲線”.現有下列命題:
①若點A的“伴隨點”是點,則點的“伴隨點”是點A
②單位圓的“伴隨曲線”是它自身;
③若曲線C關于x軸對稱,則其“伴隨曲線”關于y軸對稱;
④一條直線的“伴隨曲線”是一條直線.
其中的真命題是_____________(寫出所有真命題的序列).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知,且,且,函數.
(1)設,,若是奇函數,求的值;
(2)設,,判斷函數在上的單調性并加以證明;
(3)設,,,函數的圖象是否關于某垂直于軸的直線對稱?如果是,求出該對稱軸,如果不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓: 的離心率為,橢圓的四個頂點圍成的四邊形的面積為4.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)直線與橢圓交于, 兩點, 的中點在圓上,求(為坐標原點)面積的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com