精英家教網 > 高中數學 > 題目詳情

【題目】已知數列,為其前n項的和,滿足.

(1)求數列的通項公式;

(2)設數列的前n項和為,數列的前n項和為,求證:當

(3)若函數的定義域為R,并且,求證.

【答案】(1);(2)見解析;(3)見解析.

【解析】

(1)當時,,當.

(2)求出數列的通項公式可后求前n項和及,整理得,也可用數學歸納法證明該等式.

(3)結合函數的定義域及已知極限可得,再就的符號分類討論可證.

解:(1)當時,,

時,,

.

(2)法一:∵,∴,

.

法二:數學歸納法.

時,,,等式成立.

②假設時有

時,,

.

是原式也成立,

由①②可知當.

(3) ∵函數的定義域為,所以恒不為零,

的值域為,∴.

時,,與矛盾,故.

易知,否則若,則,與矛盾,

,則,與矛盾,

,∴即有.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】(數學文卷·2017屆重慶十一中高三12月月考第16題) 現介紹祖暅原理求球體體積公式的做法:可構造一個底面半徑和高都與球半徑相等的圓柱,然后在圓柱內挖去一個以圓柱下底面圓心為頂點,圓柱上底面為底面的圓錐,用這樣一個幾何體與半球應用祖暅原理(圖1),即可求得球的體積公式.請研究和理解球的體積公式求法的基礎上,解答以下問題:已知橢圓的標準方程為 ,將此橢圓繞y軸旋轉一周后,得一橄欖狀的幾何體(圖2),其體積等于______

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,曲線C上的點到點的距離與它到直線的距離之比為,圓O的方程為,曲線Cx軸的正半軸的交點為A,過原點O且異于坐標軸的直線與曲線C交于B,C兩點,直線AB與圓O的另一交點為P,直線PD與圓O的另一交點為Q,其中,設直線AB,AC的斜率分別為

1)求曲線C的方程,并證明到點M的距離

2)求的值;

3)記直線PQBC的斜率分別為、,是否存在常數,使得?若存在,求的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】定義上的函數,若滿足:對任意,存在常數,都有成立,則稱上的有界函數,其中稱為函數的上界.

(1)設,判斷上是否有界函數,若是,請說明理由,并寫出的所有上界的值的集合,若不是,也請說明理由;

(2)若函數上是以3為上界的有界函數,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】各項均為正數的數列的前項和為,且對任意正整數,都有

1)求數列的通項公式;

2)如果等比數列共有2016項,其首項與公比均為2,在數列的每相鄰兩項之間插入后,得到一個新的數列.求數列中所有項的和;

3)是否存在實數,使得存在,使不等式成立,若存在,求實數的范圍,若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】直線與圓相交于兩點,的面積達到最大時,________.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,當P(x,y)不是原點時,定義P伴隨點;

P是原點時,定義P伴隨點為它自身,平面曲線C上所有點的伴隨點所構成的曲線定義為曲線C伴隨曲線”.現有下列命題:

若點A伴隨點是點,則點伴隨點是點A

單位圓的伴隨曲線是它自身;

若曲線C關于x軸對稱,則其伴隨曲線關于y軸對稱;

一條直線的伴隨曲線是一條直線.

其中的真命題是_____________(寫出所有真命題的序列).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知,,函數.

1)設,,若是奇函數,求的值;

2)設,,判斷函數上的單調性并加以證明;

3)設,,函數的圖象是否關于某垂直于軸的直線對稱?如果是,求出該對稱軸,如果不是,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓 的離心率為,橢圓的四個頂點圍成的四邊形的面積為4.

(Ⅰ)求橢圓的標準方程;

(Ⅱ)直線與橢圓交于, 兩點, 的中點在圓上,求為坐標原點)面積的最大值.

查看答案和解析>>

同步練習冊答案