【題目】已知拋物線,過拋物線焦點的直線分別交拋物線和圓于點(自上而下)

1)求證:為定值;

2)若、成等差數(shù)列,求直線的方程.

【答案】1)見解析(2

【解析】

1)討論當直線過焦點且垂直于軸時,四點坐標可直接求出,可求得,當直線過焦點且不垂直于軸時,設(shè)直線方程為,聯(lián)立拋物線方程,運用韋達定理和拋物線的定義,即可得到定值;

1)由、、成等差數(shù)列,可得,從而可得,而,,列方程可求出斜率,從而可求出直線方程.

1)由題知,焦點,圓半徑

①當斜率不存在時,,交點,此時;

②當斜率存在時,設(shè)

聯(lián)立,消去

由韋達定理得,顯然恒成立

由拋物線定義得,同理

所以

2)由成等差數(shù)列,得

所以弦長

由(1)知顯然斜率存在,由拋物線定義得

,解得,

所以直線的方程為

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】直角坐標系xOy中,橢圓ab0)的短軸長為,離心率為.

1)求橢圓的方程;

2)斜率為1且經(jīng)過橢圓的右焦點的直線交橢圓于P1、P2兩點,P是橢圓上任意一點,若λμR),證明:λ2+μ2為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某省即將實行新高考,不再實行文理分科.某校為了研究數(shù)學成績優(yōu)秀是否對選擇物理有影響,對該校2018級的1000名學生進行調(diào)查,收集到相關(guān)數(shù)據(jù)如下:

1)根據(jù)以上提供的信息,完成列聯(lián)表,并完善等高條形圖;

選物理

不選物理

總計

數(shù)學成績優(yōu)秀

數(shù)學成績不優(yōu)秀

260

總計

600

1000

2)能否在犯錯誤的概率不超過0.05的前提下認為數(shù)學成績優(yōu)秀與選物理有關(guān)?

附:

臨界值表:

0.10

0.05

0.010

0.005

0.001

2.706

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線的參數(shù)方程為為參數(shù)),以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.

(Ⅰ)求直線的普通方程及曲線的直角坐標方程;

(Ⅱ)已知點是曲線上的任意一點,當點到直線的距離最大時,求經(jīng)過點且與直線平行的直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知O為坐標原點,,,直線AGBG相交于點G,且它們的斜率之積為.記點G的軌跡為曲線C.

1)若射線與曲線C交于點D,且E為曲線C的最高點,證明:.

2)直線與曲線C交于MN兩點,直線AM,ANy軸分別交于P,Q兩點.試問在x軸上是否存在定點T,使得以PQ為直徑的圓恒過點T?若存在,求出T的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

1)設(shè)兩點,,且,若函數(shù)的圖象分別在點、處的兩條切線互相垂直,求的最小值;

2)若對任意,恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在某校冬季長跑活動中,學校要給獲得一、二等獎的學生購買獎品,要求花費總額不得超過.已知一等獎和二等獎獎品的單價分別為元、元,一等獎人數(shù)與二等獎人數(shù)的比值不得高于,且獲得一等獎的人數(shù)不能少于人,那么下列說法中錯誤的是(

A.最多可以購買份一等獎獎品

B.最多可以購買份二等獎獎品

C.購買獎品至少要花費

D.共有種不同的購買獎品方案

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在某外國語學校舉行的(高中生數(shù)學建模大賽)中,參與大賽的女生與男生人數(shù)之比為,且成績分布在,分數(shù)在以上(含)的同學獲獎.按女生、男生用分層抽樣的方法抽取人的成績作為樣本,得到成績的頻率分布直方圖如圖所示.

(Ⅰ)求的值,并計算所抽取樣本的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);

(Ⅱ)填寫下面的列聯(lián)表,并判斷在犯錯誤的概率不超過的前提下能否認為“獲獎與女生、男生有關(guān)”.

女生

男生

總計

獲獎

不獲獎

總計

附表及公式:

其中,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】工資條里顯紅利,個稅新政人民心我國自1980年以來,力度最大的一次個人所得稅(簡稱個稅)改革迎來了全面實施的階段.201911日實施的個稅新政主要內(nèi)容包括:(1)個稅起征點為5000元;(2)每月應(yīng)納稅所得額(含稅)收人個稅起征點專項附加扣除;(3)專項附加扣除包括住房、子女教育和贍養(yǎng)老人等.新舊個稅政策下每月應(yīng)納稅所得額(含稅)計算方法及其對應(yīng)的稅率表如下:

舊個稅稅率表(個稅起征點3500元)

新個稅稅率表(個稅起征點5000元)

繳稅基數(shù)

每月應(yīng)納稅所得額(含稅)收入個稅起征點

稅率(%

每月應(yīng)納稅所得額(含稅)收入個稅起征點專項附加扣除

稅率(%

1

不超過1500元的部分

3

不超過3000元的部分

3

2

超過1500元至4500元的部分

10

超過3000元至12000元的部分

10

3

超過4500元至9000元的部分

20

超過12000元至25000元的部分

20

4

超過9000元至35000元的部分

25

超過25000元至35000元的部分

25

5

超過35000元至55000元的部分

30

超過35000元至55000元的部分

30

隨機抽取某市2020名同一收入層級的從業(yè)者的相關(guān)資料,經(jīng)統(tǒng)計分析,預(yù)估他們2019年的人均月收入24000元,統(tǒng)計資料還表明,他們均符合住房專項扣除;同時,他們每人至多只有一個符合子女教育扣除的孩子,并且他們中既不符合子女教育扣除又不符合贍養(yǎng)老人扣除、只符合子女教育扣除但不符合贍養(yǎng)老人扣除、只符合贍養(yǎng)老人扣除但不符合子女教育扣除、既符合子女教育扣除又符合贍養(yǎng)老人扣除的人數(shù)之比是;此外,他們均不符合其他專項附加扣除,新個稅政策下該市的專項附加扣除標準為:住房1000/月,子女教育每孩1000/月,贍養(yǎng)老人2000/月等.假設(shè)該市該收入層級的從業(yè)者都獨自享受專項附加扣除,將預(yù)估的該市該收入層級的從業(yè)者的人均月收入視為其個人月收入,根據(jù)樣本估計總體的思想,解決如下問題:

1)求在舊政策下該收入層級的從業(yè)者每月應(yīng)納的個稅;

2)設(shè)該市該收入層級的從業(yè)者2019年月繳個稅為X元,求X的分布列和期望;

3)根據(jù)新舊個稅方案,估計從20191月開始,經(jīng)過多少個月,該市該收入層級的從業(yè)者各月少繳納的個稅之和就超過2019年的人均月收入?

查看答案和解析>>

同步練習冊答案