【題目】數(shù)列{an}的前n項(xiàng)和為Sn , 若a1=1,an+1=3Sn(n≥1),則a6=( )
A.3×44
B.3×44+1
C.44
D.44+1
【答案】A
【解析】解:由an+1=3Sn , 得到an=3Sn﹣1(n≥2),
兩式相減得:an+1﹣an=3(Sn﹣Sn﹣1)=3an ,
則an+1=4an(n≥2),又a1=1,a2=3S1=3a1=3,
得到此數(shù)列除去第一項(xiàng)后,為首項(xiàng)是3,公比為4的等比數(shù)列,
所以an=a2qn﹣2=3×4n﹣2(n≥2)
則a6=3×44 .
故選A
【考點(diǎn)精析】本題主要考查了等比數(shù)列的通項(xiàng)公式(及其變式)和等比數(shù)列的前n項(xiàng)和公式的相關(guān)知識(shí)點(diǎn),需要掌握通項(xiàng)公式:;前項(xiàng)和公式:才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),當(dāng)和時(shí),取得極值.
(1)求的值;
(2)若函數(shù)的極大值大于20,極小值小于5,試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),直線與的圖象的相鄰兩個(gè)交點(diǎn)的橫坐標(biāo)分別是和,現(xiàn)有如下命題:
①該函數(shù)在上的值域是;
②在上,當(dāng)且僅當(dāng)時(shí)函數(shù)取最大值;
③該函數(shù)的最小正周期可以是;
④的圖象可能過(guò)原點(diǎn).
其中的真命題有__________.(寫(xiě)出所有真命題的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校進(jìn)行體驗(yàn),現(xiàn)得到所有男生的身高數(shù)據(jù),從中隨機(jī)抽取50人進(jìn)行統(tǒng)計(jì)(已知這50個(gè)身高介于155 到195之間),現(xiàn)將抽取結(jié)果按如下方式分成八組:第一組,第二組,…,第八組,并按此分組繪制如圖所示的頻率分布直方圖,其中第六組和第七組還沒(méi)有繪制完成,已知第一組與第八組人數(shù)相同,第六組和第七組人數(shù)的比為5:2.
(1)補(bǔ)全頻率分布直方圖;
(2)根據(jù)頻率分布直方圖估計(jì)這50位男生身高的中位數(shù);
(3)用分層抽樣的方法在身高為內(nèi)抽取一個(gè)容量為5的樣本,從樣本中任意抽取2位男生,求這兩位男生身高都在內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】要得到函數(shù)y=﹣sin2x+ 的圖象,只需將y=sinxcosx的圖象( )
A.向左平移 個(gè)單位
B.向右平移 個(gè)單位
C.向左平移 個(gè)單位
D.向右平移 個(gè)單位
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)幾何體的三視圖如圖所示,已知正(主)視圖是底邊長(zhǎng)為1的平行四邊形,側(cè)(左)視圖是一個(gè)長(zhǎng)為,寬為1的矩形,俯視圖為兩個(gè)邊長(zhǎng)為1的正方形拼成的矩形.
(1)求該幾何體的體積;
(2)求該幾何體的表面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,向量 =(a,c), =(1﹣2cosA,2cosC﹣1),
(Ⅰ)若b=5,求a+c值;
(Ⅱ)若 ,且角A是△ABC中最大內(nèi)角,求角A的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,直三棱柱中, , , 為棱的中點(diǎn).
(Ⅰ)探究直線與平面的位置關(guān)系,并說(shuō)明理由;
(Ⅱ)若,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=2x﹣ .
(Ⅰ)若f(x)=2,求x的值;
(Ⅱ)若2tf(2t)+mf(t)≥0對(duì)于t∈[1,2]恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com