【題目】已知命題p:“方程x2﹣ax+a+3=0有解”,q:“ ﹣a≥0在[0,+∞)上恒成立”,若p或q為真命題,p且q為假命題,求實數(shù)a的取值范圍.

【答案】解:命題p:方程x2﹣ax+a+3=0有解,可得,△=a2﹣4a﹣12≥0,解得a≤﹣2或a≥6. 命題q:“ ﹣a≥0在[0,+∞)上恒成立,a≤ ,設f(x)= ,因為f(x)在[0,+∞)為減函數(shù),
所以f(x)>0,
解得a≤0.
∵p或q為真命題,p且q為假命題,
∴命題p與q一真一假,
當p真q假時, ,解得a≥6,
當p假q真時, ,解得﹣2<a≤0,
綜上實數(shù)a的取值范圍是(﹣2,0]∪[6,+∞)
【解析】命題p:方程x2﹣ax+a+3=0有解,可得△≥0,解得a的取值范圍.命題q ﹣a≥0在[0,+∞)上恒成立,即a≤ ,解得a的取值范圍.由于p或q為真命題,p且q為假命題,命題p與q一真一假,分別求出,即可得到a的取值范圍
【考點精析】掌握復合命題的真假是解答本題的根本,需要知道“或”、 “且”、 “非”的真值判斷:“非p”形式復合命題的真假與F的真假相反;“p且q”形式復合命題當P與q同為真時為真,其他情況時為假;“p或q”形式復合命題當p與q同為假時為假,其他情況時為真.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)y=fx)圖象上存在不同的兩點A,B關于y軸對稱,則稱點對[A,B]是函數(shù)y=fx)的一對“黃金點對”(注:點對[A,B][B,A]可看作同一對“黃金點對”).已知函數(shù)fx=,則此函數(shù)的“黃金點對“有(  )

A. 0B. 1C. 2D. 3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,某中學甲、乙兩班共有25名學生報名參加了一項 測試.這25位學生的考分編成的莖葉圖,其中有一個數(shù)據(jù)因電腦操作員不小心刪掉了(這里暫用x來表示),但他清楚地記得兩班學生成績的中位數(shù)相同.

)求這兩個班學生成績的中位數(shù)及x的值;

)如果將這些成績分為優(yōu)秀(得分在175分 以上,包括175分)和過關,若學校再從這兩個班獲得優(yōu)秀成績的考生中選出3名代表學校參加比賽,求這3人中甲班至多有一人入選的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)的定義域為R,對任意,有>-1,且f(1)=1,下列命題正確的是( 。

A. 是單調(diào)遞減函數(shù)

B. 是單調(diào)遞增函數(shù)

C. 不等式的解集為

D. 不等式的解集為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)y=f(x)的定義域為D,若對于任意的x1 , x2∈D,當x1+x2=2a時,恒有f(x1)+f(x2)=2b,則稱點(a,b)為函數(shù)y=f(x)的對稱中心.研究函數(shù)f(x)=x+sinπx﹣3的某個對稱中心,并利用對稱中心的上述定義,可求得f( )+f( )+…+f( )+f( )的值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從某居民區(qū)隨機抽取10個家庭,獲得第i個家庭的月收入單位:千元與月儲蓄單位:千元的數(shù)據(jù)資料,算得,附:線性回歸方程中,,其中,為樣本平均值.

求家庭的月儲蓄y對月收入x的線性回歸方程

判斷變量xy之間是正相關還是負相關;

若該居民區(qū)某家庭月收入為7千元,預測該家庭的月儲蓄.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在上的可導函數(shù)的導函數(shù)為,滿足,且為偶函數(shù),,則不等式的解集為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某高校共有學生15000人,其中男生10500人,女生4500人,為調(diào)查該校學生每周平均體育運動時間的情況,采用分層抽樣的方法,收集300位學生每周平均體育運動時間的樣本數(shù)據(jù)(單位:小時).

1)應收集多少位女生的樣本數(shù)據(jù)?

2)根據(jù)這300樣本數(shù)據(jù),得到學生每周平均體育運動時間的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)的分組區(qū)間為: .估計該校學生每周平均體育運動時間超過4小時的概率;

3)在樣本數(shù)據(jù)中,有60位女生的每周平均體育運動時間超過4小時,請完成每周平均體育運動時間與性別的列聯(lián)表,并判斷是否有95%的把握認為該校學生的每周平均體育運動時間與性別有關


0.10

0.05

0.010

0.005


2.706

3.841

6.635

7.879

附:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x+ ,且f(1)=3.
(1)求m的值;
(2)判斷函數(shù)f(x)的奇偶性.

查看答案和解析>>

同步練習冊答案