如圖,在三棱錐A-BCD中,△ABD和△BCD是兩個(gè)全等的等腰直角三角形,O為BD的中點(diǎn),且AB=AD=CB=CD=2,AC=

(1)當(dāng)時(shí),求證:AO⊥平面BCD;
(2)當(dāng)二面角的大小為時(shí),求二面角的正切值.

(1)先證 AO⊥CO, AO⊥BD   (2)

解析試題分析:(1)根據(jù)題意知,在△AOC中,,
所以,所以AO⊥CO.
因?yàn)锳O是等腰直角E角形ABD的中線(xiàn),所以AO⊥BD.
又BDCO=O,所以AO⊥平面BCD.
(2)法一 由題易知,CO⊥OD.如圖,以O(shè)為原點(diǎn),
OC、OD所在的直線(xiàn)分別為軸、軸建立如圖所示的空間直角坐標(biāo)系,
則有O(0,0,0),,
設(shè),則,
設(shè)平面ABD的法向量為,


所以,令,則
所以
因?yàn)槠矫鍮CD的一個(gè)法向量為,
且二面角的大小為,所以,
,整理得
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/f1/b/17rrl4.png" style="vertical-align:middle;" />,所以,
解得,所以,
設(shè)平面ABC的法向量為
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/74/3/rvmmg.png" style="vertical-align:middle;" />,,

,則,.所以
設(shè)二面角的平面角為,則

所以,即二面角的正切值為
法二 在△ABD中,BD⊥AO,在△BCD中,BD⊥CO,
所以∠AOC是二面角的平面角,即∠AOC=
如圖,過(guò)點(diǎn)A作CO的垂線(xiàn)交CO的延長(zhǎng)線(xiàn)于點(diǎn)H,
因?yàn)锽D⊥CO,BD⊥AO,且COAO=O,
所以BD⊥平面AOC.
因?yàn)锳H平面AOC,所以BD⊥AH.
又CO⊥AH,且COBD=O,所以AH⊥平面BCD.
過(guò)點(diǎn)A作AK⊥BC,垂足為K,連接HK.
因?yàn)锽C⊥AH,AKAH=A,所以BC⊥平面AHK.
因?yàn)镠K平面AHK,所以BC⊥HK,
所以∠AKH為二面角的平面角.

在△AOH中,∠AOH=,,則,,
所以
在R t△CHK中,∠HCK=,所以
在 R t△AHK中,,
所以二面角的正切值為
考點(diǎn):直線(xiàn)與平面垂直的判定;與二面角有關(guān)的立體幾何綜合題.
點(diǎn)評(píng):本小題主要考查空間線(xiàn)面關(guān)系、二面角的度量、直線(xiàn)與平面所成的角等知識(shí),考查數(shù)形結(jié)合、化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,以及空間想象能力、推理論證能力和運(yùn)算求解能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,正三棱錐O﹣ABC的底面邊長(zhǎng)為2,高為1,求該三棱錐的體積及表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在三棱柱ABC-A1B1C1中,E,F(xiàn),G,H分別是AB,AC,A1B1,A1C1的中點(diǎn),求證:

(1)B,C,H,G四點(diǎn)共面;
(2)平面EFA1∥平面BCHG.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

在長(zhǎng)方體中,,過(guò)、、三點(diǎn)的平面截去長(zhǎng)方體的一個(gè)角后,得到如圖所示的幾何體,且這個(gè)幾何體的體積為

(1)求棱的長(zhǎng);
(2)若的中點(diǎn)為,求異面直線(xiàn)所成角的大小(結(jié)果用反三角函數(shù)值表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知直角梯形中,,是等邊三角形,平面⊥平面.

(1)求二面角的余弦值;
(2)求到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知,,
求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,四邊形都是邊長(zhǎng)為的正方形,點(diǎn)E是的中點(diǎn),

求證:;
求證:平面
求體積的比值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在直三棱柱(側(cè)棱垂直底面)中,M、N分別是BC、AC1中點(diǎn),AA1=2,AB=,AC=AM=1.

(1)證明:MN∥平面A1ABB1;
(2)求幾何體C—MNA的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知為平行四邊形,,,點(diǎn)上,,相交于.現(xiàn)將四邊形沿折起,使點(diǎn)在平面上的射影恰在直線(xiàn)上.

(Ⅰ) 求證:平面;
(Ⅱ) 求折后直線(xiàn)與平面所成角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案