在△ABC中,A=120°,b=4,S△ABC=2
3
,則邊長c=
 
考點:三角形的面積公式
專題:解三角形
分析:利用三角形面積公式列出關(guān)系式S=
1
2
bcsinA,將b,sinA及已知面積代入求出c的值.
解答: 解:解:∵b=4,A=120°,
△ABC的面積為S=
1
2
bcsinA=
3
c=2
3
,
∴c=2.
故答案為:2
點評:此題考查了三角形的面積公式,熟練掌握公式是解本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知一條曲線C在y軸右邊,C上每一點到點F(1,0)的距離與它到直線x=-1的距離相等.
(1)求曲線C的方程; 
(2)是否存在正數(shù)m,使得過點M(m,0)且斜率k=1的直線與曲線C有兩個交點A、B,且滿足
FA
FB
<0?若存在,求m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax3+bx2,當x=1時,函數(shù)有極大值3.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的極小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

寫出圓心為C(1,-2),半徑r=3的圓的方程,并判斷點M(4,-2)、N(1,0)、P(5,1)與圓C的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x3+ax2+bx-4,若x=-
1
3
與x=-1是f(x)的極值點.
(1)求a、b及函數(shù)f(x)的極值;
(2)設(shè)g(x)=kx2+x-8(k∈R),試討論函數(shù)F(x)=f(x)-g(x)在區(qū)間[0,+∞)上的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
3
x3-
1
2
(a+1)x2+ax+1
,a∈R.若函數(shù)f(x)在區(qū)間(-1,1)內(nèi)是減函數(shù),則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的通項公式an=
n+1,n為正奇數(shù)
2n,n為正偶數(shù)
,則{an}的前n項和為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在R上的函數(shù)y=f(x)滿足條件f(x+2)=-f(x),且函數(shù)y=f(x-1)為奇函數(shù),給出以下四個命題:
①函數(shù)f(x)是周期函數(shù);       
②函數(shù)f(x)的圖象關(guān)于點(-1,0)對稱;
③函數(shù)f(x)為R上的偶函數(shù);   
④函數(shù)f(x)為R上的單調(diào)函數(shù).
其中真命題的序號為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知以原點為頂點的拋物線C,焦點在x軸上,直線x-y=0與拋物線C交于A、B兩點.若P(2,2)為AB的中點,則拋物線C的方程為
 

查看答案和解析>>

同步練習冊答案