【題目】已知函數(shù)f(x)=ex-ax-1(e為自然對(duì)數(shù)的底數(shù)),a>0.
(1)若函數(shù)f(x)恰有一個(gè)零點(diǎn),證明:aa=ea-1;
(2)若f(x)≥0對(duì)任意x∈R恒成立,求實(shí)數(shù)a的取值集合.
【答案】(1)見(jiàn)解析;(2){1}.
【解析】
試題(1)先判斷f(x)的單調(diào)性,根據(jù)“f(x)前有一個(gè)零點(diǎn)”,找到關(guān)于a的等式,化簡(jiǎn)整理可得需證結(jié)論;(2)根據(jù)(1),只需f(x)的最小值不小于0即可.
試題解析:(1)證明: 由,得.
由>0,即>0,解得x>lna,同理由<0解得x<lna,
∴ f(x)在(-∞,lna)上是減函數(shù),在(lna,+∞)上是增函數(shù),
于是f(x)在x=lna取得最小值.
又∵ 函數(shù)f(x)恰有一個(gè)零點(diǎn),則,
即.
化簡(jiǎn)得:,
∴.
(2)解:由(1)知,在取得最小值,
由題意得≥0,即≥0,
令,則,
由可得0<a<1,由可得a>1.
∴ h(a)在(0,1)上單調(diào)遞增,在(1,+∞)上單調(diào)遞減,即,
∴ 當(dāng)0<a<1或a>1時(shí),h(a)<0,
∴ 要使得f(x)≥0對(duì)任意x∈R恒成立,a=1
∴ a的取值集合為{1}
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐的底面是平行四邊形,側(cè)面是邊長(zhǎng)為2的正三角形, , .
(Ⅰ)求證:平面平面;
(Ⅱ)設(shè)是棱上的點(diǎn),當(dāng)平面時(shí),求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),若函數(shù)有三個(gè)不同的零點(diǎn),則實(shí)數(shù)的取值范圍是
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市食品藥品監(jiān)督管理局開(kāi)展2020年春季快遞餐飲安全檢查,對(duì)本市的8個(gè)快遞配餐點(diǎn)進(jìn)行了原料采購(gòu)加工標(biāo)準(zhǔn)和衛(wèi)生標(biāo)準(zhǔn)的檢查和評(píng)分,其評(píng)分情況如表所示:
快遞配餐點(diǎn)編號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
原料采購(gòu)加工標(biāo)準(zhǔn)評(píng)分 | 82 | 75 | 70 | 66 | 83 | 93 | 95 | 100 |
衛(wèi)生標(biāo)準(zhǔn)評(píng)分 | 81 | 79 | 77 | 75 | 82 | 83 | 84 | 87 |
(1)已知與之間具有線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程;(精確到0.1)
(2)現(xiàn)從8個(gè)被檢查點(diǎn)中任意抽取兩個(gè)組成一組,若兩個(gè)點(diǎn)的原料采購(gòu)加工標(biāo)準(zhǔn)和衛(wèi)生標(biāo)準(zhǔn)的評(píng)分均超過(guò)80分,則組成“快遞標(biāo)兵配餐點(diǎn)”,求該組被評(píng)為“快遞標(biāo)兵配餐點(diǎn)”的概率.
參考公式:,;參考數(shù)據(jù):,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求在點(diǎn)處的切線方程;
(2)若不等式恒成立,求k的取值范圍;
(3)求證:當(dāng)時(shí),不等式成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在極坐標(biāo)系中,直線l:,P為直線l上一點(diǎn),且點(diǎn)P在極軸上方以OP為一邊作正三角形逆時(shí)針?lè)较?/span>,且面積為.
求Q點(diǎn)的極坐標(biāo);
求外接圓的極坐標(biāo)方程,并判斷直線l與外接圓的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)有個(gè)小球,甲、乙兩位同學(xué)輪流且不放回抓球,每次最少抓1個(gè)球,最多抓3個(gè)球,規(guī)定誰(shuí)抓到最后一個(gè)球誰(shuí)贏. 如果甲先抓,那么下列推斷正確的是( )
A. 若=4,則甲有必贏的策略 B. 若=6,則乙有必贏的策略
C. 若=9,則甲有必贏的策略 D. 若=11,則乙有必贏的策略
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠生產(chǎn)的產(chǎn)品中分正品與次品,正品重,次品重,現(xiàn)有5袋產(chǎn)品(每袋裝有10個(gè)產(chǎn)品),已知其中有且只有一袋次品(10個(gè)產(chǎn)品均為次品)如果將5袋產(chǎn)品以1~5編號(hào),第袋取出個(gè)產(chǎn)品(),并將取出的產(chǎn)品一起用秤(可以稱出物體重量的工具)稱出其重量,若次品所在的袋子的編號(hào)是2,此時(shí)的重量_________;若次品所在的袋子的編號(hào)是,此時(shí)的重量_______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com