化簡(jiǎn)sin2α+sin2β-sin2αcos2β-sin2αsin2β的結(jié)果為
 
考點(diǎn):三角函數(shù)的化簡(jiǎn)求值,同角三角函數(shù)基本關(guān)系的運(yùn)用
專題:計(jì)算題,三角函數(shù)的求值
分析:先對(duì)原式進(jìn)行合并同類項(xiàng),利用同角三角函數(shù)基本關(guān)系,進(jìn)行化簡(jiǎn)求值.
解答: 解:sin2α+sin2β-sin2αcos2β-sin2αsin2β
=sin2α(1-cos2β)+sin2β(1-sin2α)
=sin2αsin2β+sin2βcos2α
=sin2β(sin2α+cos2α)
=sin2β
故答案為;sin2β
點(diǎn)評(píng):本題主要考查了同角三角函數(shù)的基本關(guān)系對(duì)函數(shù)進(jìn)行化簡(jiǎn)求值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖三棱柱ABC-A1B1C1中,側(cè)棱與底面垂直,△ABC是等邊三角形,點(diǎn)D是BC的中點(diǎn).
(Ⅰ)證明:A1B∥平面C1AD;
(Ⅱ)若在三棱柱ABC-A1B1C1內(nèi)部(含表面)隨機(jī)投放一個(gè)點(diǎn)P,求點(diǎn)P落在三棱錐C1-A1AD內(nèi)部(含表面)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在一次數(shù)學(xué)測(cè)驗(yàn)后,班級(jí)學(xué)委王明對(duì)選答題的選題情況進(jìn)行了統(tǒng)計(jì),如下表:(單位:人)
幾何證明選講 坐標(biāo)系與參數(shù)方程 不等式選講 合計(jì)
男同學(xué) 12 4 6 22
女同學(xué) 0 8 12 20
合計(jì) 12 12 18 42
(Ⅰ)在統(tǒng)計(jì)結(jié)果中,如果把《幾何證明選講》和《坐標(biāo)系與參數(shù)方程》稱為幾何類,把《不等式選講》稱為代數(shù)類,我們可以得到如下2×2列聯(lián)表:(單位:人)
幾何類 代數(shù)類 總計(jì)
男同學(xué) 16 6 22
女同學(xué) 8 12 20
總計(jì) 24 18 42
據(jù)此判斷是否有95%的把握認(rèn)為選做“幾何類”或“代數(shù)類”與性別有關(guān)?
(Ⅱ)在原統(tǒng)計(jì)結(jié)果中,如果不考慮性別因素,按分層抽樣的方法從選做不同選做題的同學(xué)中隨機(jī)選出7名同學(xué)進(jìn)行座談.已知學(xué)委王明和兩名數(shù)學(xué)科代表三人都在選做《不等式選講》的同學(xué)中.
①求在這名班級(jí)學(xué)委被選中的條件下,兩名數(shù)學(xué)科代表也被選中的概率;
②記抽到數(shù)學(xué)科代表的人數(shù)為X,求X的分布列及數(shù)學(xué)期望E(X).
下面臨界值表僅供參考:
P(K2≥k0 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k0 2.072 2.706 3.841 5.024 6.635 7.879 10.828
參考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若m-
1
2
<x≤m+
1
2
(其中m為整數(shù)),則稱m為離實(shí)數(shù)x最近的整數(shù),記作I[x],即I[x]=m.設(shè)集合A={(x,y)|f(x)=x-I[x],x∈R},B={(x,y)|g(x)=logax},其中0<a<1,若集合A∩B的元素恰有三個(gè),則a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=
4
(x-3)
+3
(x<3)的值域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

執(zhí)行如圖所示的程序框圖,則輸出的T值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知復(fù)數(shù)z滿足|z-2-3i|=1,則|z+1+i|的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知偶函數(shù)f(x)是定義在R上的函數(shù),對(duì)x∈R都有f(x+6)=f(x)+f(3),若當(dāng)x∈(-3,-2)時(shí),f(x)=5x,則f(201.5)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=aln(x+1)-x2在區(qū)間(0,1)內(nèi)任取兩個(gè)實(shí)數(shù)p,q,且p≠q,不等式
f(p+1)-f(q+1)
p-q
>1恒成立,則實(shí)數(shù)a的取值范圍為( 。
A、[15,+∞)
B、(-∞,15]
C、(12,30]
D、(-12,15]

查看答案和解析>>

同步練習(xí)冊(cè)答案